# Contents - [HourNAS Description](#tinynet-description) - [Model Architecture](#model-architecture) - [Dataset](#dataset) - [Environment Requirements](#environment-requirements) - [Script Description](#script-description) - [Script and Sample Code](#script-and-sample-code) - [Training Process](#training-process) - [Evaluation Process](#evaluation-process) - [Model Description](#model-description) - [Performance](#performance) - [Evaluation Performance](#evaluation-performance) - [Description of Random Situation](#description-of-random-situation) - [ModelZoo Homepage](#modelzoo-homepage) # [HourNAS Description](#contents) HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods. [Paper](https://arxiv.org/abs/2005.14446): Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021. # [Model architecture](#contents) The overall network architecture of HourNAS is show below: [Link](https://arxiv.org/abs/2005.14446) # [Dataset](#contents) Dataset used: [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html) - Dataset size:175M,60,000 32*32 colorful images in 10 classes - Train:146M,50,000 images - Test:29M,10,000 images - Data format:binary files - Note:Data will be processed in src/dataset.py # [Environment Requirements](#contents) - Hardware (GPU) - Framework - [MindSpore](https://www.mindspore.cn/install/en) - For more information, please check the resources below: - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) # [Script Description](#contents) ## [Script and Sample Code](#contents) ```markdown .HourNAS ├── README.md # descriptions about HourNAS ├── src │ ├── architectures.py # definition of HourNAS-F model │ ├── dataset.py # data preprocessing │ ├── hournasnet.py # HourNAS general architecture │ └── utils.py # utility functions ├── eval.py # evaluation interface ``` ### [Training process](#contents) To Be Done ### [Evaluation Process](#contents) #### Launch ```bash # infer example python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH] ``` ### Result ```bash result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt ``` # [Model Description](#contents) ## [Performance](#contents) ### Evaluation Performance | Model | FLOPs (M) | Params (M) | ImageNet Top-1 | | --------------- | --------- | ---------- | -------------- | | MnasNet-A1 | 312 | 3.9 | 75.2% | | HourNAS-E | 313 | 3.8 | 75.7% | | EfficientNet-B0 | 390 | 5.3 | 76.8% | | HourNAS-F | 383 | 5.3 | 77.0% | More details in [Paper](https://arxiv.org/abs/2005.14446). # [Description of Random Situation](#contents) We set the seed inside dataset.py. # [ModelZoo Homepage](#contents) Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).