# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import argparse import numpy as np from mindspore import context, Tensor from mindspore.train.serialization import export, load_checkpoint from src.mobilenet_v1 import mobilenet_v1 as mobilenet parser = argparse.ArgumentParser(description="mobilenetv1 export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--dataset", type=str, default="imagenet2012", help="Dataset, either cifar10 or imagenet2012") parser.add_argument('--width', type=int, default=224, help='input width') parser.add_argument('--height', type=int, default=224, help='input height') parser.add_argument("--file_name", type=str, default="mobilenetv1", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.dataset == "cifar10": from src.config import config1 as config else: from src.config import config2 as config if __name__ == "__main__": target = args.device_target if target != "GPU": context.set_context(device_id=args.device_id) network = mobilenet(class_num=config.class_num) param_dict = load_checkpoint(args.ckpt_file, net=network) network.set_train(False) input_data = Tensor(np.zeros([config.batch_size, 3, args.height, args.width]).astype(np.float32)) export(network, input_data, file_name=args.file_name, file_format=args.file_format)