# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Alexnet.""" import mindspore.nn as nn from mindspore.ops import operations as P def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid", has_bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, has_bias=has_bias, pad_mode=pad_mode) def fc_with_initialize(input_channels, out_channels, has_bias=True): return nn.Dense(input_channels, out_channels, has_bias=has_bias) class AlexNet(nn.Cell): """ Alexnet """ def __init__(self, num_classes=10, channel=3, phase='train', include_top=True): super(AlexNet, self).__init__() self.conv1 = conv(channel, 64, 11, stride=4, pad_mode="same", has_bias=True) self.conv2 = conv(64, 128, 5, pad_mode="same", has_bias=True) self.conv3 = conv(128, 192, 3, pad_mode="same", has_bias=True) self.conv4 = conv(192, 256, 3, pad_mode="same", has_bias=True) self.conv5 = conv(256, 256, 3, pad_mode="same", has_bias=True) self.relu = P.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid') self.include_top = include_top if self.include_top: dropout_ratio = 0.65 if phase == 'test': dropout_ratio = 1.0 self.flatten = nn.Flatten() self.fc1 = fc_with_initialize(6 * 6 * 256, 4096) self.fc2 = fc_with_initialize(4096, 4096) self.fc3 = fc_with_initialize(4096, num_classes) self.dropout = nn.Dropout(dropout_ratio) def construct(self, x): """define network""" x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv3(x) x = self.relu(x) x = self.conv4(x) x = self.relu(x) x = self.conv5(x) x = self.relu(x) x = self.max_pool2d(x) if not self.include_top: return x x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.dropout(x) x = self.fc2(x) x = self.relu(x) x = self.dropout(x) x = self.fc3(x) return x