# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import mindspore.dataset.transforms.vision.c_transforms as vision import mindspore.dataset as ds from mindspore import log as logger DATA_DIR = "../data/dataset/testVOC2012" def test_voc_normal(): data1 = ds.VOCDataset(DATA_DIR, decode=True) num = 0 for item in data1.create_dict_iterator(): logger.info("item[image] is {}".format(item["image"])) logger.info("item[image].shape is {}".format(item["image"].shape)) logger.info("item[target] is {}".format(item["target"])) logger.info("item[target].shape is {}".format(item["target"].shape)) num += 1 logger.info("num is {}".format(str(num))) def test_case_0(): data1 = ds.VOCDataset(DATA_DIR, decode=True) resize_op = vision.Resize((224, 224)) data1 = data1.map(input_columns=["image"], operations=resize_op) data1 = data1.map(input_columns=["target"], operations=resize_op) repeat_num = 4 data1 = data1.repeat(repeat_num) batch_size = 2 data1 = data1.batch(batch_size, drop_remainder=True) num = 0 for item in data1.create_dict_iterator(): logger.info("item[image].shape is {}".format(item["image"].shape)) logger.info("item[target].shape is {}".format(item["target"].shape)) num += 1 logger.info("num is {}".format(str(num)))