# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(enable_task_sink=True) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() def construct(self, x, y): return self.add(x, y) x = np.ones([1, 3, 3, 4]).astype(np.float32) y = np.ones([1, 3, 3, 4]).astype(np.float32) def test_net(): add = Net() output = add(Tensor(x), Tensor(y)) print(x) print(y) print(output.asnumpy())