# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_training """ import numpy as np import mindspore.nn as nn from mindspore import context from mindspore.common.tensor import Tensor from mindspore.nn import WithGradCell, WithLossCell from mindspore.nn.optim import Momentum from mindspore.ops import operations as P from mindspore.train.model import Model from ..ut_filter import non_graph_engine def setup_module(module): context.set_context(mode=context.PYNATIVE_MODE) class LeNet5(nn.Cell): """ LeNet5 definition """ def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = P.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x @non_graph_engine def test_loss_cell_wrapper(): """ test_loss_cell_wrapper """ data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([1, 10]).astype(np.float32)) net = LeNet5() loss_fn = nn.SoftmaxCrossEntropyWithLogits() loss_net = WithLossCell(net, loss_fn) loss_out = loss_net(data, label) assert loss_out.asnumpy().dtype == 'float32' or loss_out.asnumpy().dtype == 'float64' @non_graph_engine def test_grad_cell_wrapper(): """ test_grad_cell_wrapper """ data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([1, 10]).astype(np.float32)) dout = Tensor(np.ones([1]).astype(np.float32)) net = LeNet5() loss_fn = nn.SoftmaxCrossEntropyWithLogits() grad_net = WithGradCell(net, loss_fn, dout) gradients = grad_net(data, label) assert isinstance(gradients[0].asnumpy()[0][0][0][0], (np.float32, np.float64))