# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.common.tensor import Tensor from mindspore.common.parameter import ParameterTuple, Parameter context.set_context(device_target='CPU') class LstmNet(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(LstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) input_np = np.array([[[0.6755, -1.6607, 0.1367], [0.4276, -0.7850, -0.3758]], [[-0.6424, -0.6095, 0.6639], [0.7918, 0.4147, -0.5089]], [[-1.5612, 0.0120, -0.7289], [-0.6656, -0.6626, -0.5883]], [[-0.9667, -0.6296, -0.7310], [0.1026, -0.6821, -0.4387]], [[-0.4710, 0.6558, -0.3144], [-0.8449, -0.2184, -0.1806]] ]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.h = Parameter(initializer( Tensor( np.array([0.1, 0.1, 0.1, 0.1]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( np.float32)), [num_layers * num_directions, batch_size, hidden_size]), name='h') self.c = Parameter(initializer( Tensor( np.array([0.2, 0.2, 0.2, 0.2]).reshape((num_layers * num_directions, batch_size, hidden_size)).astype( np.float32)), [num_layers * num_directions, batch_size, hidden_size]), name='c') wih = np.array([[3.4021e-01, -4.6622e-01, 4.5117e-01], [-6.4257e-02, -2.4807e-01, 1.3550e-02], # i [-3.2140e-01, 5.5578e-01, 6.3589e-01], [1.6547e-01, -7.9030e-02, -2.0045e-01], [-6.9863e-01, 5.9773e-01, -3.9062e-01], [-3.0253e-01, -1.9464e-01, 7.0591e-01], [-4.0835e-01, 3.6751e-01, 4.7989e-01], [-5.6894e-01, -5.0359e-01, 4.7491e-01]]).astype(np.float32) # .reshape([1,-1]) whh = np.array([[-0.4820, -0.2350], [-0.1195, 0.0519], [0.2162, -0.1178], [0.6237, 0.0711], [0.4511, -0.3961], [-0.5962, 0.0906], [0.1867, -0.1225], [0.1831, 0.0850]]).astype(np.float32) # .reshape([1,-1]) wih = wih.transpose((1, 0)) whh = whh.transpose((1, 0)) bih = np.zeros((1, 8)).astype(np.float32) w_np = np.concatenate((wih, whh, bih), axis=0).reshape([-1, 1, 1]) self.w = Parameter(initializer(Tensor(w_np), w_np.shape), name='w') @ms_function def construct(self): return self.lstm(self.x, self.h, self.c, self.w) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_lstm(): seq_len = 5 batch_size = 2 input_size = 3 hidden_size = 2 num_layers = 1 has_bias = True bidirectional = False dropout = 0.0 num_directions = 1 if bidirectional: num_directions = 2 net = LstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) y, h, c, _, _ = net() print(y) print(c) print(h) expect_y = np.array([[[-0.16709016, 0.13125697], [-0.08438572, -0.01969833]], [[-0.2746155, 0.32764038], [-0.06504016, -0.07770399]], [[-0.00140004, 0.17706314], [0.03244496, -0.10135599]], [[0.08328028, 0.06437367], [-0.04133911, -0.11072896]], [[0.19004421, -0.02852732], [0.09138509, -0.00344161]]] ) error = np.ones([num_layers, batch_size, hidden_size]) * 1.0e-4 diff = y.asnumpy() - expect_y assert np.all(diff < error) assert np.all(-diff < error) # expect_h = np.array([[[0.19004421, -0.02852732], [0.09138509, -0.00344161]]]) error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 diff = h.asnumpy() - expect_h assert np.all(diff < error) assert np.all(-diff < error) # expect_c = np.array([[[0.34533143, -0.06313794], [0.169008, -0.00555446]]]) error = np.ones((num_layers * num_directions, batch_size, hidden_size)) * 1.0e-4 diff = c.asnumpy() - expect_c assert np.all(diff < error) assert np.all(-diff < error) class MultiLayerBiLstmNet(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(MultiLayerBiLstmNet, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) input_np = np.array([[[-0.1887, -0.4144, -0.0235, 0.7489, 0.7522, 0.5969, 0.3342, 1.2198, 0.6786, -0.9404], [-0.8643, -1.6835, -2.4965, 2.8093, 0.1741, 0.2707, 0.7387, -0.0939, -1.7990, 0.4765]], [[-0.5963, -1.2598, -0.7226, 1.1365, -1.7320, -0.7302, 0.1221, -0.2111, -1.6173, -0.0706], [0.8964, 0.1737, -1.0077, -0.1389, 0.4889, 0.4391, 0.7911, 0.3614, -1.9533, -0.9936]], [[0.3260, -1.3312, 0.0601, 1.0726, -1.6010, -1.8733, -1.5775, 1.1579, -0.8801, -0.5742], [-2.2998, -0.6344, -0.5409, -0.9221, -0.6500, 0.1206, 1.5215, 0.7517, 1.3691, 2.0021]], [[-0.1245, -0.3690, 2.1193, 1.3852, -0.1841, -0.8899, -0.3646, -0.8575, -0.3131, 0.2026], [1.0218, -1.4331, 0.1744, 0.5442, -0.7808, 0.2527, 0.1566, 1.1484, -0.7766, -0.6747]], [[-0.6752, 0.9906, -0.4973, 0.3471, -0.1202, -0.4213, 2.0213, 0.0441, 0.9016, 1.0365], [1.2223, -1.3248, 0.1207, -0.8256, 0.1816, 0.7057, -0.3105, 0.5713, 0.2804, -1.0685]]]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.h0 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='h0') self.c0 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='c0') self.h1 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='h1') self.c1 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='c1') self.h = ParameterTuple((self.h0, self.h1)) self.c = ParameterTuple((self.c0, self.c1)) @ms_function def construct(self): return self.lstm(self.x, (self.h, self.c)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_multi_layer_bilstm(): seq_len = 5 batch_size = 2 input_size = 10 hidden_size = 2 num_layers = 2 has_bias = True bidirectional = True dropout = 0.0 num_directions = 1 if bidirectional: num_directions = 2 net = MultiLayerBiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) y, h, c, _, _ = net() print(y) print(h) print(c) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.network = network self.weights = ParameterTuple(network.trainable_params()) self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) @ms_function def construct(self, output_grad): weights = self.weights grads = self.grad(self.network, weights)(output_grad) return grads class Net(nn.Cell): def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): super(Net, self).__init__() num_directions = 1 if bidirectional: num_directions = 2 input_np = np.array([[[-0.5907, 1.0557, 1.7283, 0.6706, -1.2550, -0.5298, -0.2290, -0.6735, 0.8555, 1.4836], [-1.7070, -0.5347, -0.9105, -0.2598, 0.0588, 1.5496, 1.0757, 0.3760, -1.2020, -0.2868]], [[0.0151, 0.2126, 0.8090, -0.5292, -2.5590, 0.4279, -0.3081, -1.4706, -0.0498, 1.2301], [0.4165, -0.5391, -0.0996, 0.1928, -0.4909, -0.1255, 0.4444, -1.3687, 1.3096, 0.6553]], [[-0.7802, -0.2083, -0.6388, 1.3757, 0.4293, 0.5363, 0.3202, -0.6687, -1.3864, -0.2953], [1.0799, -0.7204, 0.1130, -0.5857, -0.4855, -1.1068, 1.0126, 0.8716, 1.5460, -0.7392]], [[2.2645, -0.6586, -0.2227, 1.4290, -0.5006, -1.6576, -0.1793, 0.5319, 0.1360, 0.2707], [-0.4071, 0.1575, 1.4199, -0.9156, 0.1855, 0.4947, 1.0460, -0.6365, 0.1191, -0.6374]], [[0.2468, 1.0815, -0.4893, 0.0664, 0.6405, -2.2967, 0.7612, 0.8759, 0.5685, -1.0999], [-0.7272, -1.7750, -0.1164, -0.7159, 0.0061, -0.7839, -1.8329, 0.3434, -0.5634, 0.5384]]]).astype(np.float32) self.x = Parameter(initializer(Tensor(input_np), [seq_len, batch_size, input_size]), name='x') self.h0 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='h0') self.c0 = Parameter(initializer( Tensor(np.ones((num_directions, batch_size, hidden_size)).astype(np.float32)), [num_directions, batch_size, hidden_size]), name='c0') wih_l0 = np.array([[0.2300, 0.6668, 0.4703, 0.0425, 0.0464, 0.6825, 0.2249, -0.4315, -0.2449, 0.2964], [-0.2811, -0.3444, 0.2557, -0.5137, -0.5518, 0.1652, -0.6720, 0.1066, 0.3586, 0.6299], [0.5728, -0.1784, 0.5661, 0.4012, 0.3856, -0.1899, 0.3102, 0.3717, -0.5651, 0.1952], [0.1026, -0.0527, 0.1198, -0.3080, 0.2292, 0.5757, -0.3567, -0.2731, -0.0586, -0.2849], [0.2194, -0.1622, 0.3219, -0.3008, -0.3713, -0.3034, -0.2385, 0.0412, -0.5205, 0.0280], [-0.5499, -0.0733, -0.5236, -0.6753, -0.7045, -0.1839, -0.1037, -0.5026, -0.4055, -0.3416], [0.1573, -0.1301, -0.2882, -0.3464, 0.6643, 0.1980, -0.6804, 0.5359, 0.5996, 0.0124], [-0.6436, 0.0587, -0.6520, -0.0471, 0.1667, 0.6042, 0.5752, -0.6296, -0.2976, -0.3757]]).astype(np.float32).reshape([1, -1]) whh_l0 = np.array([[0.3358, 0.2790], [-0.5355, 0.0989], [-0.1402, 0.5120], [0.1335, 0.1653], [0.3533, -0.3531], [0.4166, -0.4420], [-0.5454, -0.1720], [0.0041, -0.0799]]).astype(np.float32).reshape([1, -1]) bih_l0 = np.array([0.5518, 0.1083, 0.4829, 0.0607, -0.1770, -0.6944, 0.3059, 0.5354]).astype( np.float32).reshape([1, -1]) bhh_l0 = np.array([0.5025, -0.1261, -0.5405, 0.3220, -0.3441, 0.6488, -0.0284, -0.2334]).astype( np.float32).reshape([1, -1]) w0_np = np.concatenate( (wih_l0, whh_l0, bih_l0 + bhh_l0), axis=1).reshape([-1, 1, 1]) self.w0 = Parameter(initializer(Tensor(w0_np), w0_np.shape), name='w0') self.lstm = P.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, bidirectional=bidirectional, dropout=dropout) @ms_function def construct(self): return self.lstm(self.x, self.h0, self.c0, self.w0)[0] @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_grad(): seq_len = 5 batch_size = 2 input_size = 10 hidden_size = 2 num_layers = 1 has_bias = True bidirectional = False dropout = 0.0 num_directions = 1 if bidirectional: num_directions = 2 net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)) dy = np.array([[[-3.5471e-01, 7.0540e-01], [2.7161e-01, 1.0865e+00]], [[-4.2431e-01, 1.4955e+00], [-4.0418e-01, -2.3282e-01]], [[-1.3654e+00, 1.9251e+00], [-4.6481e-01, 1.3138e+00]], [[1.2914e+00, -2.3753e-01], [5.3589e-01, -1.0981e-01]], [[-1.6032e+00, -1.8818e-01], [1.0065e-01, 9.2045e-01]]]).astype(np.float32) dx, dhx, dcx, dw = net(Tensor(dy)) print(dx) print(dhx) print(dcx) print(dw) # test_multi_layer_bilstm() # test_lstm() # tf_lstm_test() # test_grad()