# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import os from functools import partial import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as C2 import mindspore.dataset.transforms.vision.py_transforms as P from mindspore.communication.management import init, get_rank, get_group_size from src.config import quant_set, config_quant, config_noquant config = config_quant if quant_set.quantization_aware else config_noquant def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 target(str): the device target. Default: Ascend Returns: dataset """ if target == "Ascend": device_num = int(os.getenv("RANK_SIZE")) rank_id = int(os.getenv("RANK_ID")) else: init("nccl") rank_id = get_rank() device_num = get_group_size() columns_list = ['image', 'label'] if config.data_load_mode == "mindrecord": load_func = partial(de.MindDataset, dataset_path, columns_list) else: load_func = partial(de.ImageFolderDatasetV2, dataset_path) if device_num == 1: ds = load_func(num_parallel_workers=8, shuffle=True) else: ds = load_func(num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank_id) image_size = config.image_height mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] # define map operations if do_train: trans = [ C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), C.RandomHorizontalFlip(prob=0.5), C.Normalize(mean=mean, std=std), C.HWC2CHW() ] else: trans = [ C.Decode(), C.Resize(256), C.CenterCrop(image_size), C.Normalize(mean=mean, std=std), C.HWC2CHW() ] type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 target(str): the device target. Default: Ascend Returns: dataset """ if target == "Ascend": device_num = int(os.getenv("RANK_SIZE")) rank_id = int(os.getenv("RANK_ID")) else: init("nccl") rank_id = get_rank() device_num = get_group_size() if do_train: if device_num == 1: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) else: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank_id) else: ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False) image_size = 224 # define map operations decode_op = P.Decode() resize_crop_op = P.RandomResizedCrop(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)) horizontal_flip_op = P.RandomHorizontalFlip(prob=0.5) resize_op = P.Resize(256) center_crop = P.CenterCrop(image_size) to_tensor = P.ToTensor() normalize_op = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # define map operations if do_train: trans = [decode_op, resize_crop_op, horizontal_flip_op, to_tensor, normalize_op] else: trans = [decode_op, resize_op, center_crop, to_tensor, normalize_op] compose = P.ComposeOp(trans) ds = ds.map(input_columns="image", operations=compose(), num_parallel_workers=8, python_multiprocessing=True) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds