# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P from mindspore.common.initializer import initializer class Net(Cell): def __init__(self, strategy1=None, strategy2=None, strategy3=None): super().__init__() self.gatherv2 = P.GatherV2().set_strategy(strategy1) self.gatherv2.add_prim_attr("manual_split", ((1, 0), (7, 1))) self.mul = P.Mul().set_strategy(strategy2) self.reshape = P.Reshape() self.matmul = P.MatMul().set_strategy(strategy3) self.matmul.add_prim_attr("forward_reduce_scatter", True) self.param = Parameter(initializer("ones", (8, 64), ms.float32), name="gatherv2_param") self.mul_weight = Parameter(initializer("ones", (2, 4, 64), ms.float32), name="mul_weight") self.matmul_weight = Parameter(initializer("ones", (256, 16), ms.float32), name="matmul_weight") def construct(self, x, b): out = self.gatherv2(self.param, x, 0) out = self.mul(out, self.mul_weight) out = self.reshape(out, (2, 256)) out = self.matmul(out, self.matmul_weight) return out _x = Tensor(np.ones([2, 4]), dtype=ms.int32) _b = Tensor(np.ones([64, 8]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() _executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_neg_data_parallel(): context.set_context(save_graphs=True) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0) strategy1 = ((2, 1), (1, 2)) strategy2 = ((1, 2, 1), (1, 2, 1)) strategy3 = ((1, 2), (2, 1)) net = Net(strategy1, strategy2, strategy3) compile_net(net)