# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Convert ckpt to air.""" import os import argparse import numpy as np from mindspore import context from mindspore import Tensor from mindspore.train.serialization import export, load_checkpoint, load_param_into_net from src.backbone.resnet import get_backbone devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid) def main(args): network = get_backbone(args) ckpt_path = args.pretrained if os.path.isfile(ckpt_path): param_dict = load_checkpoint(ckpt_path) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) print('-----------------------load model success-----------------------') else: print('-----------------------load model failed -----------------------') network.add_flags_recursive(fp16=True) network.set_train(False) input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 112, 112)).astype(np.float32) tensor_input_data = Tensor(input_data) file_path = ckpt_path.replace('.ckpt', '_' + str(args.batch_size) + 'b.air') export(network, tensor_input_data, file_name=file_path, file_format='AIR') print('-----------------------export model success, save file:{}-----------------------'.format(file_path)) def parse_args(): '''parse_args''' parser = argparse.ArgumentParser(description='Convert ckpt to air') parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load') parser.add_argument('--batch_size', type=int, default=16, help='batch size') parser.add_argument('--pre_bn', type=int, default=0, help='1: bn-conv-bn-conv-bn, 0: conv-bn-conv-bn') parser.add_argument('--inference', type=int, default=1, help='use inference backbone') parser.add_argument('--use_se', type=int, default=0, help='use se block or not') parser.add_argument('--emb_size', type=int, default=256, help='embedding size of the network') parser.add_argument('--act_type', type=str, default='relu', help='activation layer type') parser.add_argument('--backbone', type=str, default='r100', help='backbone network') parser.add_argument('--head', type=str, default='0', help='head type, default is 0') parser.add_argument('--use_drop', type=int, default=0, help='whether use dropout in network') args = parser.parse_args() return args if __name__ == "__main__": arg = parse_args() main(arg)