# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air, onnx, mindir models################# python export.py """ import argparse import numpy as np import mindspore as ms from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context from src.config import cifar_cfg, imagenet_cfg from src.googlenet import GoogleNet parser = argparse.ArgumentParser(description='Classification') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="googlenet", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], help='dataset name.') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': if args.dataset_name == 'cifar10': cfg = cifar_cfg elif args.dataset_name == 'imagenet': cfg = imagenet_cfg else: raise ValueError("dataset is not support.") net = GoogleNet(num_classes=cfg.num_classes) assert cfg.checkpoint_path is not None, "cfg.checkpoint_path is None." param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) input_arr = Tensor(np.ones([args.batch_size, 3, cfg.image_height, cfg.image_width]), ms.float32) export(net, input_arr, file_name=args.file_name, file_format=args.file_format)