#Copyright 2019 Huawei Technologies Co., Ltd # #Licensed under the Apache License, Version 2.0(the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # #http: // www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. #== == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter x = np.random.uniform(-2, 2, (2,3,4,4)).astype(np.float32) y = np.random.uniform(-2, 2, (1,1,1,1)).astype(np.float32) context.set_context(device_target='CPU') class Net(nn.Cell): def __init__( self): super(Net, self).__init__() self.mul = P.Mul() self.x = Parameter(initializer(Tensor(x), x.shape), name='x3') self.y = Parameter(initializer(Tensor(y), y.shape), name='y3') @ms_function def construct(self): return self.mul(self.x, self.y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_Mul(): mul = Net() output = mul() print(x) print(y) print(output)