# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.nn as nn import mindspore.context as context import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore.common.api import ms_function context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.image_gradients = nn.ImageGradients() @ms_function def construct(self, x): return self.image_gradients(x) def test_image_gradients(): image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32) expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32) expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32) net = Net() dy, dx = net(image) assert np.any(dx.asnumpy()-expected_dx) == False assert np.any(dy.asnumpy()-expected_dy) == False def test_image_gradients_multi_channel_depth(): # 4 x 2 x 2 x 2 dtype = mstype.int32 image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]], [[[3,5],[7,9]], [[11,13],[15,17]]], [[[5,10],[15,20]], [[25,30],[35,40]]], [[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype) expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]], [[[4,4],[0,0]], [[4,4],[0,0]]], [[[10,10],[0,0]], [[10,10],[0,0]]], [[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype) expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]], [[[2,0],[2,0]], [[2,0],[2,0]]], [[[5,0],[5,0]], [[5,0],[5,0]]], [[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype) net = Net() dy, dx = net(image) assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False