# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Bbox utils""" import math import itertools as it import numpy as np from .config import config class GeneratDefaultBoxes(): """ Generate Default boxes for SSD, follows the order of (W, H, archor_sizes). `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w]. `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2]. """ def __init__(self): fk = config.img_shape[0] / np.array(config.steps) scale_rate = (config.max_scale - config.min_scale) / (len(config.num_default) - 1) scales = [config.min_scale + scale_rate * i for i in range(len(config.num_default))] + [1.0] self.default_boxes = [] for idex, feature_size in enumerate(config.feature_size): sk1 = scales[idex] sk2 = scales[idex + 1] sk3 = math.sqrt(sk1 * sk2) if idex == 0: w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2) all_sizes = [(0.1, 0.1), (w, h), (h, w)] else: all_sizes = [(sk1, sk1)] for aspect_ratio in config.aspect_ratios[idex]: w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio) all_sizes.append((w, h)) all_sizes.append((h, w)) all_sizes.append((sk3, sk3)) assert len(all_sizes) == config.num_default[idex] for i, j in it.product(range(feature_size), repeat=2): for w, h in all_sizes: cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex] self.default_boxes.append([cy, cx, h, w]) def to_ltrb(cy, cx, h, w): return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2 # For IoU calculation self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32') self.default_boxes = np.array(self.default_boxes, dtype='float32') default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb default_boxes = GeneratDefaultBoxes().default_boxes y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1) vol_anchors = (x2 - x1) * (y2 - y1) matching_threshold = config.match_thershold def ssd_bboxes_encode(boxes): """ Labels anchors with ground truth inputs. Args: boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls]. Returns: gt_loc: location ground truth with shape [num_anchors, 4]. gt_label: class ground truth with shape [num_anchors, 1]. num_matched_boxes: number of positives in an image. """ def jaccard_with_anchors(bbox): """Compute jaccard score a box and the anchors.""" # Intersection bbox and volume. ymin = np.maximum(y1, bbox[0]) xmin = np.maximum(x1, bbox[1]) ymax = np.minimum(y2, bbox[2]) xmax = np.minimum(x2, bbox[3]) w = np.maximum(xmax - xmin, 0.) h = np.maximum(ymax - ymin, 0.) # Volumes. inter_vol = h * w union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol jaccard = inter_vol / union_vol return np.squeeze(jaccard) pre_scores = np.zeros((config.num_ssd_boxes), dtype=np.float32) t_boxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32) t_label = np.zeros((config.num_ssd_boxes), dtype=np.int64) for bbox in boxes: label = int(bbox[4]) scores = jaccard_with_anchors(bbox) idx = np.argmax(scores) scores[idx] = 2.0 mask = (scores > matching_threshold) mask = mask & (scores > pre_scores) pre_scores = np.maximum(pre_scores, scores * mask) t_label = mask * label + (1 - mask) * t_label for i in range(4): t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i] index = np.nonzero(t_label) # Transform to ltrb. bboxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32) bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2 bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]] # Encode features. bboxes_t = bboxes[index] default_boxes_t = default_boxes[index] bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.prior_scaling[0]) bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.prior_scaling[1] bboxes[index] = bboxes_t num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32) return bboxes, t_label.astype(np.int32), num_match def ssd_bboxes_decode(boxes): """Decode predict boxes to [y, x, h, w]""" boxes_t = boxes.copy() default_boxes_t = default_boxes.copy() boxes_t[:, :2] = boxes_t[:, :2] * config.prior_scaling[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2] boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.prior_scaling[1]) * default_boxes_t[:, 2:4] bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32) bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2 bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2 return np.clip(bboxes, 0, 1) def intersect(box_a, box_b): """Compute the intersect of two sets of boxes.""" max_yx = np.minimum(box_a[:, 2:4], box_b[2:4]) min_yx = np.maximum(box_a[:, :2], box_b[:2]) inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf) return inter[:, 0] * inter[:, 1] def jaccard_numpy(box_a, box_b): """Compute the jaccard overlap of two sets of boxes.""" inter = intersect(box_a, box_b) area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])) area_b = ((box_b[2] - box_b[0]) * (box_b[3] - box_b[1])) union = area_a + area_b - inter return inter / union