# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ #################train googlent example on cifar10######################## python train.py """ import argparse import os import random import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.communication.management import init from mindspore.nn.optim.momentum import Momentum from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.model import Model, ParallelMode from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import cifar_cfg as cfg from src.dataset import create_dataset from src.googlenet import GoogleNet random.seed(1) np.random.seed(1) def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None): """Set learning rate.""" lr_each_step = [] total_steps = steps_per_epoch * total_epochs decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] for i in range(total_steps): if i < decay_epoch_index[0]: lr_each_step.append(lr_max) elif i < decay_epoch_index[1]: lr_each_step.append(lr_max * 0.1) elif i < decay_epoch_index[2]: lr_each_step.append(lr_max * 0.01) else: lr_each_step.append(lr_max * 0.001) current_step = global_step lr_each_step = np.array(lr_each_step).astype(np.float32) learning_rate = lr_each_step[current_step:] return learning_rate if __name__ == '__main__': parser = argparse.ArgumentParser(description='Cifar10 classification') parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target) if args_opt.device_id is not None: context.set_context(device_id=args_opt.device_id) else: context.set_context(device_id=cfg.device_id) device_num = int(os.environ.get("DEVICE_NUM", 1)) if device_num > 1: context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) init() dataset = create_dataset(cfg.data_path, cfg.epoch_size) batch_num = dataset.get_dataset_size() net = GoogleNet(num_classes=cfg.num_classes) # Continue training if set pre_trained to be True if cfg.pre_trained: param_dict = load_checkpoint(cfg.checkpoint_path) load_param_into_net(net, param_dict) lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum, weight_decay=cfg.weight_decay) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None) config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max) time_cb = TimeMonitor(data_size=batch_num) ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory="./", config=config_ck) loss_cb = LossMonitor() model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb]) print("train success")