# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test lazy adam """ import numpy as np from mindspore.nn.optim import LazyAdam, FTRL, Adam, ProximalAdagrad import mindspore.nn as nn from mindspore import Tensor, Parameter, context from mindspore.ops import operations as P context.set_context(enable_sparse=True) class NetWithSparseGatherV2(nn.Cell): """ NetWithSparseGatherV2 definition """ def __init__(self): super(NetWithSparseGatherV2, self).__init__() self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1") self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2") self.axis = 0 self.gather = P.SparseGatherV2() def construct(self, indices, label): return self.gather(self.weight1, indices, self.axis) + self.weight2 def test_ftrl_target(): """ test_ftrl_target """ net = NetWithSparseGatherV2() net.set_train() optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0) if optimizer.target not in ('CPU', 'Ascend'): raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target)) def test_lazyadam_target(): """ test_lazyadam_target """ net = NetWithSparseGatherV2() net.set_train() optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) if optimizer.target not in ('CPU', 'Ascend'): raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target)) def test_adam_target(): """ test_adam_target """ net = NetWithSparseGatherV2() net.set_train() optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9) if optimizer.target not in ('CPU', 'Ascend'): raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target)) def test_proximal_target(): """ test_proximal_target """ net = NetWithSparseGatherV2() net.set_train() optimizer = ProximalAdagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0) if optimizer.target not in ('CPU', 'Ascend'): raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))