# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Data operations, will be used in train.py and eval.py """ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.vision.c_transforms as vision from src.config import cifar_cfg, imagenet_cfg def create_dataset_cifar10(data_home, repeat_num=1, training=True): """Data operations.""" data_dir = os.path.join(data_home, "cifar-10-batches-bin") if not training: data_dir = os.path.join(data_home, "cifar-10-verify-bin") rank_size, rank_id = _get_rank_info() if training: data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=True) else: data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=False) resize_height = cifar_cfg.image_height resize_width = cifar_cfg.image_width # define map operations random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR rescale_op = vision.Rescale(1.0 / 255.0, 0.0) normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) changeswap_op = vision.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, rescale_op, normalize_op, changeswap_op] # apply map operations on images data_set = data_set.map(operations=type_cast_op, input_columns="label") data_set = data_set.map(operations=c_trans, input_columns="image") # apply batch operations data_set = data_set.batch(batch_size=cifar_cfg.batch_size, drop_remainder=True) # apply repeat operations data_set = data_set.repeat(repeat_num) return data_set def create_dataset_imagenet(dataset_path, repeat_num=1, training=True, num_parallel_workers=None, shuffle=None): """ create a train or eval imagenet2012 dataset for resnet50 Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 target(str): the device target. Default: Ascend Returns: dataset """ device_num, rank_id = _get_rank_info() if device_num == 1: data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallel_workers, shuffle=shuffle) else: data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallel_workers, shuffle=shuffle, num_shards=device_num, shard_id=rank_id) assert imagenet_cfg.image_height == imagenet_cfg.image_width, "image_height not equal image_width" image_size = imagenet_cfg.image_height mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] # define map operations if training: transform_img = [ vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), vision.RandomHorizontalFlip(prob=0.5), vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1), vision.Normalize(mean=mean, std=std), vision.HWC2CHW() ] else: transform_img = [ vision.Decode(), vision.Resize(256), vision.CenterCrop(image_size), vision.Normalize(mean=mean, std=std), vision.HWC2CHW() ] transform_label = [C.TypeCast(mstype.int32)] data_set = data_set.map(input_columns="image", num_parallel_workers=12, operations=transform_img) data_set = data_set.map(input_columns="label", num_parallel_workers=4, operations=transform_label) # apply batch operations data_set = data_set.batch(imagenet_cfg.batch_size, drop_remainder=True) # apply dataset repeat operation data_set = data_set.repeat(repeat_num) return data_set def _get_rank_info(): """ get rank size and rank id """ rank_size = int(os.environ.get("RANK_SIZE", 1)) if rank_size > 1: from mindspore.communication.management import get_rank, get_group_size rank_size = get_group_size() rank_id = get_rank() else: rank_size = rank_id = None return rank_size, rank_id