# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test distribute predict """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Model from mindspore.ops import operations as P from mindspore import context class Net(nn.Cell): """Net definition""" def __init__(self): super(Net, self).__init__() self.fc1 = nn.Dense(128, 768, activation='relu') self.fc2 = nn.Dense(128, 768, activation='relu') self.fc3 = nn.Dense(128, 768, activation='relu') self.fc4 = nn.Dense(768, 768, activation='relu') self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() def construct(self, x): q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s def test_distribute_predict(): context.set_context(mode=context.GRAPH_MODE) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True) inputs = Tensor(np.ones([32, 128]).astype(np.float32)) net = Net() model = Model(net) predict_map = model.infer_predict_layout(inputs) output = model.predict(inputs) context.reset_auto_parallel_context() return predict_map, output def test_edge_case(): context.set_context(mode=context.GRAPH_MODE) inputs = Tensor(np.ones([32, 48]).astype(np.float32)) net = Net() model = Model(net) with pytest.raises(RuntimeError): model.infer_predict_layout(inputs) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") with pytest.raises(RuntimeError): model.infer_predict_layout(inputs) context.set_auto_parallel_context(full_batch=True, enable_parallel_optimizer=True) with pytest.raises(RuntimeError): model.predict(inputs)