/** * Copyright 2019-2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "backend/session/gpu_session.h" #include "backend/optimizer/common/helper.h" #include "backend/optimizer/common/optimizer.h" #include "backend/optimizer/common/pass_manager.h" #include "backend/optimizer/gpu/adam_weight_decay_fusion.h" #include "backend/optimizer/gpu/adam_fusion.h" #include "backend/optimizer/gpu/apply_momentum_weight_scale_fusion.h" #include "backend/optimizer/gpu/apply_momentum_scale_fusion.h" #include "backend/optimizer/gpu/batch_norm_relu_fusion.h" #include "backend/optimizer/gpu/batch_norm_relu_grad_fusion.h" #include "backend/optimizer/gpu/batch_norm_add_relu_fusion.h" #include "backend/optimizer/gpu/batch_norm_add_relu_grad_fusion.h" #include "backend/optimizer/gpu/combine_momentum_fusion.h" #include "backend/optimizer/gpu/combine_cast_fusion.h" #include "backend/optimizer/gpu/cudnn_inplace_fusion.h" #include "backend/optimizer/gpu/insert_format_transform_op.h" #include "backend/optimizer/gpu/replace_momentum_cast_fusion.h" #include "backend/optimizer/gpu/replace_addn_fusion.h" #include "backend/optimizer/gpu/remove_format_transform_pair.h" #include "backend/optimizer/gpu/remove_redundant_format_transform.h" #include "backend/optimizer/gpu/reduce_precision_fusion.h" #include "backend/optimizer/graph_kernel/arithmetic_simplify.h" #include "backend/optimizer/graph_kernel/basic_ops_fusion.h" #include "backend/optimizer/graph_kernel/composite_ops_fusion.h" #include "backend/optimizer/graph_kernel/tensor_promotion.h" #include "backend/optimizer/graph_kernel/graph_kernel_splitter.h" #include "backend/optimizer/graph_kernel/graph_kernel_expander.h" #include "backend/optimizer/graph_kernel/graph_kernel_cse.h" #include "backend/optimizer/graph_kernel/shape_ops_splitter.h" #include "backend/optimizer/graph_kernel/value_graph_binder.h" #include "backend/optimizer/pass/communication_op_fusion.h" #include "backend/optimizer/pass/getitem_tuple.h" #include "common/trans.h" #include "debug/data_dump/e2e_dump_util.h" #include "debug/tensor_load.h" #include "debug/dump_proto.h" #include "runtime/device/gpu/gpu_kernel_build.h" #include "runtime/device/gpu/gpu_kernel_runtime.h" #include "runtime/device/gpu/gpu_stream_assign.h" #include "runtime/device/gpu/kernel_info_setter.h" #include "runtime/device/kernel_runtime_manager.h" #include "runtime/device/gpu/cuda_driver.h" #include "runtime/device/gpu/distribution/collective_init.h" #include "utils/ms_utils.h" #include "utils/config_manager.h" #include "utils/ms_context.h" #if ENABLE_CPU && ENABLE_GPU #include "ps/util.h" #endif namespace mindspore { namespace session { namespace gpu { using AnfAlgo = mindspore::session::AnfRuntimeAlgorithm; using CollectiveInitializer = device::gpu::CollectiveInitializer; using GetLocalRankId = device::gpu::GetLocalRankId; void GPUSession::Init(uint32_t device_id) { const void *collective_handle_ = CollectiveInitializer::instance().collective_handle(); bool collective_inited = CollectiveInitializer::instance().collective_inited(); if (collective_inited && collective_handle_ != nullptr) { auto get_local_rank_funcptr = reinterpret_cast(dlsym(const_cast(collective_handle_), "local_rank_id")); MS_EXCEPTION_IF_NULL(get_local_rank_funcptr); device_id = IntToUint((*get_local_rank_funcptr)()); } bool ret = device::gpu::CudaDriver::set_current_device(UintToInt(device_id)); if (!ret) { MS_LOG(EXCEPTION) << "GPUSession failed to set current device id."; } auto ms_context = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(ms_context); ms_context->set_param(MS_CTX_DEVICE_ID, device_id); MS_LOG(INFO) << "Set device id " << device_id << " for gpu session."; InitDevice(kGPUDevice, device_id); } void GPUSession::SelectKernel(const std::shared_ptr &kernel_graph) const { MS_EXCEPTION_IF_NULL(kernel_graph); device::gpu::FormatTransformChecker::GetInstance().CheckSupportFormatTransform(kernel_graph); for (const auto &kernel_node : kernel_graph->execution_order()) { MS_EXCEPTION_IF_NULL(kernel_node); device::gpu::SetKernelInfo(kernel_node); } } void GPUSession::StartKernelRT() const { auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); if (!runtime_instance->Init()) { MS_LOG(EXCEPTION) << "GPU start kernel runtime failed"; } } void GPUSession::Optimize(const std::shared_ptr &kernel_graph) { MS_EXCEPTION_IF_NULL(kernel_graph); auto context_ptr = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(context_ptr); auto optimizer = std::make_shared(); auto pm = std::make_shared(); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared("cast_all")); pm->AddPass(std::make_shared("combine_momentum")); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); optimizer->AddPassManager(pm); (void)optimizer->Optimize(kernel_graph); kernel_graph->SetExecOrderByDefault(); } void GPUSession::HardwareOptimize(const std::shared_ptr &kernel_graph) { auto optimizer = std::make_shared(); auto pm = std::make_shared(); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared("reduce_precision")); optimizer->AddPassManager(pm); (void)optimizer->Optimize(kernel_graph); kernel_graph->SetExecOrderByDefault(); } void GPUSession::RunOpHardwareOptimize(const std::shared_ptr &kernel_graph) { auto optimizer = std::make_shared(); auto pm = std::make_shared(); pm->AddPass(std::make_shared("reduce_precision")); optimizer->AddPassManager(pm); (void)optimizer->Optimize(kernel_graph); kernel_graph->SetExecOrderByDefault(); } void GPUSession::GraphKernelOptimize(const std::shared_ptr &kernel_graph) { auto context_ptr = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(context_ptr); if (!(context_ptr->get_param(MS_CTX_ENABLE_GRAPH_KERNEL))) { return; } auto optimizer = std::make_shared(); auto pm = std::make_shared("graph_kernel_pm"); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); // After Simplify and Splitter, a lot of redundant getitem/maketuple // will be exposed, use GetitemTuple Pass to delete them. pm->AddPass(std::make_shared()); pm->AddPass(std::make_shared()); optimizer->AddPassManager(pm); (void)optimizer->Optimize(kernel_graph); kernel_graph->SetExecOrderByDefault(); } void GPUSession::AssignStream(const std::shared_ptr &kernel_graph) { MS_EXCEPTION_IF_NULL(kernel_graph); device::gpu::AssignGpuStream(kernel_graph); } void GPUSession::BuildKernel(const std::shared_ptr &kernel_graph) const { device::gpu::GpuBuild(kernel_graph); } void GPUSession::AllocateMemory(KernelGraph *kernel_graph) const { MS_EXCEPTION_IF_NULL(kernel_graph); auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); runtime_instance->AssignMemory(kernel_graph); } void GPUSession::RunOpAllocateMemory(const ValuePtr &pre_output_value, const std::vector &input_tensors, KernelGraph *kernel_graph) const { MS_EXCEPTION_IF_NULL(kernel_graph); auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); runtime_instance->RunOpAssignMemory(pre_output_value, input_tensors, kernel_graph); } void GPUSession::RunOpClearMemory(KernelGraph *kernel_graph) const { MS_EXCEPTION_IF_NULL(kernel_graph); auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); runtime_instance->RunOpClearMemory(kernel_graph); } void GPUSession::LoadInputData(const std::shared_ptr &kernel_graph, const std::vector &inputs_const) const { std::vector inputs(inputs_const); MS_EXCEPTION_IF_NULL(kernel_graph); auto &input_nodes = kernel_graph->input_nodes(); auto ms_context = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(ms_context); if (inputs.size() != input_nodes.size()) { MS_LOG(EXCEPTION) << "Tensor input:" << inputs.size() << " is not equal graph inputs:" << input_nodes.size(); } for (size_t i = 0; i < inputs.size(); ++i) { auto tensor = inputs[i]; MS_EXCEPTION_IF_NULL(tensor); auto input_node = input_nodes[i]; MS_EXCEPTION_IF_NULL(input_node); if (input_node->isa() && AnfAlgo::OutputAddrExist(input_node, 0)) { auto pk_node = input_node->cast(); auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0); auto tensor_address = std::dynamic_pointer_cast(tensor->device_address()); bool need_sync = false; if (ms_context->get_param(MS_CTX_ENABLE_PYNATIVE_INFER)) { if (tensor_address == nullptr || tensor_address != device_address) { need_sync = true; } } else if (tensor->NeedSyncHostToDevice() || tensor_address == nullptr) { need_sync = true; } else if (tensor_address != device_address) { if (tensor_address->DeviceType() == device_address->DeviceType()) { AnfAlgo::SetOutputAddr(tensor_address, 0, pk_node.get()); } else { need_sync = true; } } if (need_sync) { if (AnfAlgo::IsParameterWeight(input_node->cast())) { tensor->set_device_address(device_address); } MS_EXCEPTION_IF_NULL(device_address); if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0), LongToSize(tensor->data().nbytes()), tensor->data_type(), tensor->data_c())) { MS_LOG(EXCEPTION) << "SyncHostToDevice failed."; } } } tensor->set_sync_status(kNoNeedSync); } } void GPUSession::Execute(const std::shared_ptr &kernel_graph) const { auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); if (!runtime_instance->Run(kernel_graph.get(), false)) { MS_LOG(EXCEPTION) << "GPU execute graph failed!"; } } GraphId GPUSession::CompileGraphImpl(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) { // Construct graph, if successfully, graph_sum_ + 1 auto graph_id = graph_sum_; auto graph = ConstructKernelGraph(lst, outputs); MS_EXCEPTION_IF_NULL(graph); // Prepare ms context info for dump .pb graph auto context_ptr = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(context_ptr); bool save_graphs = context_ptr->get_param(MS_CTX_SAVE_GRAPHS_FLAG); // Dump .pb graph before graph optimization if (save_graphs) { DumpIRProto(graph, "before_opt_" + std::to_string(graph_id)); } // Graph optimization irrelevant to device data format Optimize(graph); // Select kernel build info SelectKernel(graph); // Graph optimization relevant to device data format HardwareOptimize(graph); // Graph kernel fusion optimization GraphKernelOptimize(graph); #if ENABLE_CPU && ENABLE_GPU if (ps::Util::IsParamServerMode()) { CheckPSModeConsistence(graph); // Assign parameter keys. AssignParamKey(graph); } #endif // Start gpu kernel runtime StartKernelRT(); // Assign CUDA streams AssignStream(graph); // Dump .pb graph before remove nop nodes if (save_graphs) { DumpIRProto(graph, "before_removeNop_" + std::to_string(graph_id)); } // Update Graph Dynamic Shape Attr. UpdateGraphDynamicShapeAttr(NOT_NULL(graph)); graph->UpdateGraphDynamicAttr(); // Hide NopOp from execution graph opt::HideNopNode(graph.get()); // Build kernel if node is cnode BuildKernel(graph); // Set graph execution order before memory alloc, ensure that memory alloc is according to the reorder graph auto execution_order = graph->execution_order(); Reorder(&execution_order); graph->set_execution_order(execution_order); // Get summary nodes. SetSummaryNodes(graph.get()); // Dump .pb graph after graph optimization if (save_graphs) { DumpIRProto(graph, "after_opt_" + std::to_string(graph_id)); } // Set graph manager. MS_EXCEPTION_IF_NULL(context_); FuncGraphManagerPtr manager = MakeManager({graph}); context_->AddManager(manager); if (manager) { manager->AddFuncGraph(graph); graph->set_manager(manager); } // Alloc memory, including static memory and dynamic memory AllocateMemory(graph.get()); #ifdef ENABLE_DEBUGGER if (debugger_) { debugger_->LoadGraphs(graph); } #endif MS_LOG(INFO) << "CompileGraph graph_id: " << graph_id; return graph_id; } void GPUSession::RunGraphImpl(const GraphId &graph_id, const std::vector &inputs, VectorRef *outputs) { auto &kernel_graph = graphs_[graph_id]; MS_LOG(INFO) << "RunGraph graph_id: " << graph_id; // Load input data from user input LoadInputData(kernel_graph, inputs); PreIterationDbg(kernel_graph); #if ENABLE_CPU && ENABLE_GPU // Initialize parameter server InitPSParamAndOptim(kernel_graph, inputs); #endif MS_EXCEPTION_IF_NULL(kernel_graph); // It's InitDataset graph if kernel_num == 1, skip the loop. int kernel_num = kernel_graph->execution_order().size(); int64_t loopsize = (kernel_num > 1) ? ConfigManager::GetInstance().gpu_loopsink_size() : 1; for (int64_t i = 0; i < loopsize; i++) { Execute(kernel_graph); } PostLoadTensor(kernel_graph); // Summary auto context_ptr = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(context_ptr); if (context_ptr->get_param(MS_CTX_ENABLE_GPU_SUMMARY)) { Summary(kernel_graph.get()); } PostIterationDbg(kernel_graph); } void GPUSession::BuildOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info, const std::vector &input_tensors, const std::vector &tensors_mask) { // Check if the graph cache exists. if (run_op_graphs_.find(graph_info) != run_op_graphs_.end()) { return; } // Prepare the graph auto kernel_graph = ConstructSingleOpGraph(op_run_info, input_tensors, tensors_mask); MS_EXCEPTION_IF_NULL(kernel_graph); SelectKernel(kernel_graph); RunOpHardwareOptimize(kernel_graph); StartKernelRT(); // Hide NopOp from execution graph opt::HideNopNode(kernel_graph.get()); BuildKernel(kernel_graph); run_op_graphs_[graph_info] = kernel_graph; } void GPUSession::RunOpImpl(const OpRunInfo &op_run_info, const GraphInfo &graph_info, const std::vector &input_tensors, VectorRef *outputs) { auto kernel_graph = run_op_graphs_[graph_info]; MS_EXCEPTION_IF_NULL(kernel_graph); // Remove NopOp from execution graph opt::RemoveNopNode(kernel_graph.get()); RunOpAllocateMemory(op_run_info.value, input_tensors, kernel_graph.get()); // Execute the computation LoadInputData(kernel_graph, input_tensors); Execute(kernel_graph); // Fetch outputs UpdateOutputs(kernel_graph, outputs, input_tensors); RunOpClearMemory(kernel_graph.get()); } void GPUSession::Dump(const std::shared_ptr &kernel_graph) const { if (debugger_->DebuggerBackendEnabled()) { MS_EXCEPTION_IF_NULL(kernel_graph); E2eDumpUtil::DumpData(kernel_graph.get(), device_id_, debugger_.get()); } else { DumpJsonParser::GetInstance().UpdateDumpIter(); } } bool GPUSession::DumpDataEnabledIteration() const { auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); return runtime_instance->DumpDataEnabledIteration(); } void GPUSession::PreIterationDbg(const std::shared_ptr &kernel_graph) const { if (debugger_) { debugger_->PreExecute(kernel_graph, graph_sum_); } PreLoadTensor(kernel_graph); } void GPUSession::PostIterationDbg(const std::shared_ptr &kernel_graph) const { bool dump_enabled = DumpDataEnabledIteration(); // debug used for dump if (debugger_ && dump_enabled) { Dump(kernel_graph); } else { DumpJsonParser::GetInstance().UpdateDumpIter(); } if (debugger_) { debugger_->PostExecute(); } } void GPUSession::PreLoadTensor(const std::shared_ptr &kernel_graph) const { bool dump_enabled = DumpDataEnabledIteration(); if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) { return; } MS_EXCEPTION_IF_NULL(kernel_graph); auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); DebugServices *debug_services = debugger_->debug_services(); TensorLoader *tensor_loader = debug_services->tensor_loader(); tensor_loader->EmptyTensor(); uint32_t iter_num = tensor_loader->GetIterNum(); tensor_loader->set_iter_num(++iter_num); } void GPUSession::PostLoadTensor(const std::shared_ptr &kernel_graph) const { bool dump_enabled = DumpDataEnabledIteration(); if (!(debugger_ && (debugger_->debugger_enabled() || dump_enabled))) { return; } MS_EXCEPTION_IF_NULL(kernel_graph); auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_); MS_EXCEPTION_IF_NULL(runtime_instance); DebugServices *debug_services = debugger_->debug_services(); TensorLoader *tensor_loader = debug_services->tensor_loader(); tensor_loader->EmptyPrevTensor(); } } // namespace gpu } // namespace session } // namespace mindspore