# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class NetSoftmax(nn.Cell): def __init__(self): super(NetSoftmax, self).__init__() self.softmax = P.Softmax() x = Tensor(np.array([[0.1, 0.3, 0.6], [0.2, -0.6, 0.8], [0.6, 1, 0.4]]).astype(np.float32)) self.x = Parameter(initializer(x, x.shape()), name='x') def construct(self): return self.softmax(self.x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_softmax(): Softmax = NetSoftmax() output = Softmax() output = output.asnumpy() outputSum = output.sum(axis=1) expect = np.ones(3) error = expect * 1.0e-6 diff = np.abs(outputSum - expect) print(diff) assert np.all(diff < error)