# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import numpy as np import mindspore.context as context from mindspore.common import dtype as mstype from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetArgmax(nn.Cell): def __init__(self): super(NetArgmax, self).__init__() self.argmax = P.Argmax(output_type=mstype.int32) x = Tensor(np.array([[1., 20., 5.], [67., 8., 9.], [130., 24., 15.]]).astype(np.float32)) self.x = Parameter(initializer(x, x.shape()), name='x') def construct(self): return self.argmax(self.x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_argmax(): Argmax = NetArgmax() output = Argmax() print("================================") expect = np.array([1, 0, 0]).astype(np.float32) print(output) assert (output.asnumpy() == expect).all()