# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation process""" import os from mindspore import nn from mindspore import context from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.train.serialization import load_checkpoint from src.moxing_adapter import moxing_wrapper from src.config import config from src.dataset import create_lenet_dataset from src.foo import LeNet5 @moxing_wrapper() def eval_lenet5(): """Evaluation of lenet5""" context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) network = LeNet5(config.num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), config.lr, config.momentum) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) print("============== Starting Testing ==============") load_checkpoint(config.ckpt_path, network) ds_eval = create_lenet_dataset(os.path.join(config.data_path, "test"), config.batch_size, 1) if ds_eval.get_dataset_size() == 0: raise ValueError("Please check dataset size > 0 and batch_size <= dataset size") acc = model.eval(ds_eval) print("============== {} ==============".format(acc)) if __name__ == '__main__': eval_lenet5()