# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn import numpy as np import mindspore.context as context class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.assign = P.Assign() def construct(self, var, value): return self.assign(var, value) x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) value = np.array([[1, 2], [3, 4.0]]).astype(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_assign(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") assign = Net() var = Tensor(x) output = assign(var, Tensor(value)) error = np.ones(shape=[2, 2]) * 1.0e-6 diff1 = output.asnumpy() - value diff2 = var.asnumpy() - value assert np.all(diff1 < error) assert np.all(-diff1 < error) assert np.all(diff2 < error) assert np.all(-diff2 < error)