# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import datetime import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn.optim import Momentum from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.ops import operations as P from mindspore.communication.management import init, get_rank, get_group_size from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") init('nccl') epoch = 5 total = 5000 batch_size = 32 mini_batch = total // batch_size class LeNet(nn.Cell): def __init__(self): super(LeNet, self).__init__() self.relu = P.ReLU() self.batch_size = 32 weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01) weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01) self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid") self.reshape = P.Reshape() weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01) self.fc1 = nn.Dense(400, 120, weight_init=weight1) weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01) self.fc2 = nn.Dense(120, 84, weight_init=weight2) weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01) self.fc3 = nn.Dense(84, 10, weight_init=weight3) def construct(self, input_x): output = self.conv1(input_x) output = self.relu(output) output = self.pool(output) output = self.conv2(output) output = self.relu(output) output = self.pool(output) output = self.reshape(output, (self.batch_size, -1)) output = self.fc1(output) output = self.fc2(output) output = self.fc3(output) return output def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): lr = [] for step in range(total_steps): lr_ = base_lr * gamma ** (step//gap) lr.append(lr_) return Tensor(np.array(lr), dtype) def test_lenet_nccl(): net = LeNet() net.set_train() learning_rate = multisteplr(epoch, 2) momentum = Tensor(np.array([0.9]).astype(np.float32)) mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) net_with_criterion = WithLossCell(net, criterion) context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size()) train_network = TrainOneStepCell(net_with_criterion, mom_optimizer) train_network.set_train() losses = [] data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([net.batch_size]).astype(np.int32)) start = datetime.datetime.now() for i in range(epoch): for step in range(mini_batch): loss = train_network(data, label) losses.append(loss.asnumpy()) end = datetime.datetime.now() with open("ms_time.txt", "w") as fo1: fo1.write("time:") fo1.write(str(end - start)) with open("ms_loss.txt", "w") as fo2: fo2.write("loss:") fo2.write(str(losses[-5:])) assert(losses[-1] < 0.01)