# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing BasicTokenizer op in DE """ import numpy as np import mindspore.dataset as ds from mindspore import log as logger import mindspore.dataset.text as nlp BASIC_TOKENIZER_FILE = "../data/dataset/testTokenizerData/basic_tokenizer.txt" test_paras = [ dict( first=1, last=6, expected_tokens= [['Welcome', 'to', 'Beijing', '北', '京', '欢', '迎', '您'], ['長', '風', '破', '浪', '會', '有', '時', ',', '直', '掛', '雲', '帆', '濟', '滄', '海'], ['😀', '嘿', '嘿', '😃', '哈', '哈', '😄', '大', '笑', '😁', '嘻', '嘻'], ['明', '朝', '(', '1368', '—', '1644', '年', ')', '和', '清', '朝', '(', '1644', '—', '1911', '年', ')', ',', '是', '中', '国', '封', '建', '王', '朝', '史', '上', '最', '后', '两', '个', '朝', '代'], ['明', '代', '(', '1368', '-', '1644', ')', 'と', '清', '代', '(', '1644', '-', '1911', ')', 'は', '、', '中', '国', 'の', '封', '建', '王', '朝', 'の', '歴', '史', 'における', '最', '後', 'の2つの', '王', '朝', 'でした'], ['명나라', '(', '1368', '-', '1644', ')', '와', '청나라', '(', '1644', '-', '1911', ')', '는', '중국', '봉건', '왕조의', '역사에서', '마지막', '두', '왕조였다']] ), dict( first=7, last=7, expected_tokens=[['this', 'is', 'a', 'funky', 'string']], lower_case=True ), ] def check_basic_tokenizer(first, last, expected_tokens, lower_case=False, keep_whitespace=False, normalization_form=nlp.utils.NormalizeForm.NONE, preserve_unused_token=False): dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False) if first > 1: dataset = dataset.skip(first - 1) if last >= first: dataset = dataset.take(last - first + 1) basic_tokenizer = nlp.BasicTokenizer(lower_case=lower_case, keep_whitespace=keep_whitespace, normalization_form=normalization_form, preserve_unused_token=preserve_unused_token) dataset = dataset.map(operations=basic_tokenizer) count = 0 for i in dataset.create_dict_iterator(): text = nlp.to_str(i['text']) logger.info("Out:", text) logger.info("Exp:", expected_tokens[count]) np.testing.assert_array_equal(text, expected_tokens[count]) count = count + 1 def test_basic_tokenizer(): """ Test BasicTokenizer """ for paras in test_paras: check_basic_tokenizer(**paras) if __name__ == '__main__': test_basic_tokenizer()