/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "transform/convert.h" #include #include #include #include "utils/utils.h" #include "operator/ops.h" #include "utils/log_adapter.h" #include "utils/graph_utils.h" #include "utils/symbolic.h" #include "utils/config_manager.h" #include "utils/convert_utils.h" #include "./common.h" namespace mindspore { namespace transform { using std::endl; #define ADPT_DESC_ONE(T) std::make_shared(std::make_shared>()) #define ADPT_DESC_TWO(T, I) \ std::make_shared(std::make_shared>(), std::make_shared>()) #define GET_MACRO(_1, _2, DESC, ...) DESC #define ADPT_DESC(...) GET_MACRO(__VA_ARGS__, ADPT_DESC_TWO, ADPT_DESC_ONE, ...)(__VA_ARGS__) using ge::Operator; using mindspore::kAnyValue; using std::make_shared; using std::shared_ptr; using std::string; using std::vector; const char kNameCustomOp[] = "CustomOp"; const char kNameConst[] = "Const"; const char kNameParam[] = "parameter"; const char kNameRandomUniform[] = "RandomUniform"; const char kNameSimpleMean[] = "SimpleMean"; const char kNameSimpleMeanGrad[] = "SimpleMeanGrad"; const char kNameAllReduce[] = "AllReduce"; const char kNameBroadcast[] = "Broadcast"; const char kNameAllgather[] = "AllGather"; const char kNameReduceScatter[] = "ReduceScatter"; const char kNameReduceSum[] = "ReduceSum"; const char kNameIsFinite[] = "isFinite"; const char kNameReciprocal[] = "Reciprocal"; const char kNameRsqrt[] = "Rsqrt"; const char kNameRsqrtGrad[] = "RsqrtGrad"; const char kNameSqrt[] = "Sqrt"; const char kNameSquare[] = "Square"; const char kNameSquaredDifference[] = "SquaredDifference"; const char kNamePow[] = "Pow"; const char kNameBatchMatMul[] = "BatchMatMul"; const char kNameStridedSlice[] = "StridedSlice"; const char kNameStridedSliceGrad[] = "StridedSliceGrad"; const char kNameExpandDims[] = "ExpandDims"; const char kNameLog[] = "Log"; const char kNameLogicalAnd[] = "LogicalAnd"; const char kNameLogicalNot[] = "LogicalNot"; const char kNameLogicalOr[] = "LogicalOr"; const char kNameExp[] = "Exp"; const char kNameLessEqual[] = "LessEqual"; const char kNameGreaterEqual[] = "GreaterEqual"; const char kNameEqual[] = "Equal"; const char kNameNotEqual[] = "NotEqual"; const char kNameFlattenGrad[] = "FlattenGrad"; const char kNameConvolution[] = "Convolution"; const char kNameBiasAdd[] = "BiasAdd"; const char kNameMaxPoolGrad[] = "MaxPoolGrad"; const char kNameAvgPoolGrad[] = "AvgPoolGrad"; const char kNameMaxPoolGradWithArgmax[] = "MaxPoolGradWithArgmax"; const char kNameApplyMomentum[] = "ApplyMomentum"; const char kNameDropoutDoMask[] = "DropoutDoMask"; const char kNameResizeBilinear[] = "ResizeBilinear"; const char kNameResizeBilinearGrad[] = "ResizeBilinearGrad"; const char kNameZerosLike[] = "ZerosLike"; const char kNameOnesLike[] = "OnesLike"; const char kNameTruncatedNormal[] = "TruncatedNormal"; const char kNameSpaceToBatchNd[] = "SpaceToBatchNd"; const char kNameConfusionMatrix[] = "ConfusionMatrix"; const char kNameResizeNearestNeighborD[] = "ResizeNearestNeighbor"; const char kNameResizeNearestNeighborGrad[] = "ResizeNearestNeighborGrad"; const char kNameApplyAdam[] = "Adam"; const char kNameReLU6[] = "ReLU6"; const char kNameReLU6Grad[] = "ReLU6Grad"; const char kNameElu[] = "Elu"; const char kNameEluGrad[] = "EluGrad"; const char kNameScatterNdUpdate[] = "ScatterNdUpdate"; const char kNameNMSWithMask[] = "NMSWithMask"; const char kNameCheckValid[] = "CheckValid"; const char kNameSmoothL1Loss[] = "SmoothL1Loss"; const char kNameSmoothL1LossGrad[] = "SmoothL1LossGrad"; const char kNameSGD[] = "SGD"; const char kNameSigmoidCrossEntropyWithLogits[] = "SigmoidCrossEntropyWithLogits"; const char kNameSigmoidCrossEntropyWithLogitsGrad[] = "SigmoidCrossEntropyWithLogitsGrad"; const char kNameScatterNdD[] = "ScatterNd"; const char kNamePadD[] = "Pad"; const char kNameGatherNd[] = "GatherNd"; const char kNameArgmax[] = "Argmax"; const char kNameArgmin[] = "Argmin"; const char kNameArgMaxWithValue[] = "ArgMaxWithValue"; const char kNameArgMinWithValue[] = "ArgMinWithValue"; const char kNameReduceProd[] = "ReduceProd"; const char kNameCumProd[] = "CumProd"; const char kNameDiagpart[] = "Diagpart"; const char kNameSplitD[] = "Split"; const char kNameBatchToSpaceNd[] = "BatchToSpaceNd"; const char kNameFloor[] = "Floor"; const char kNameNPUGetFloatStatus[] = "NPUGetFloatStatus"; const char kNameAssignAdd[] = "AssignAdd"; const char kNameAssignSub[] = "AssignSub"; const char kNameNPUAllocFloatStatus[] = "NPUAllocFloatStatus"; const char kNameNPUClearFloatStatus[] = "NPUClearFloatStatus"; const char kNameReshape[] = "Reshape"; const char kNameRealDiv[] = "RealDiv"; const char kNameTile[] = "Tile"; const char kNameCos[] = "Cos"; const char kNameACos[] = "ACos"; const char kNameACosGrad[] = "ACosGrad"; const char kNameFloorDiv[] = "FloorDiv"; const char kNameSin[] = "Sin"; const char kNamePrelu[] = "PReLU"; const char kNamePreluGrad[] = "PReLUGrad"; const char kNameSigmoid[] = "Sigmoid"; const char kNameSigmoidGrad[] = "SigmoidGrad"; const char kNameL2Normalize[] = "L2Normalize"; const char kNameL2NormalizeGrad[] = "L2NormalizeGrad"; const char kNameSoftmax[] = "Softmax"; const char kNameIOU[] = "IOU"; const char kNameBoundingBoxDecode[] = "BoundingBoxDecode"; const char kNameBoundingBoxEncode[] = "BoundingBoxEncode"; const char kNameSlice[] = "Slice"; const char kNameAddN[] = "AddN"; const char kNameLess[] = "Less"; const char kNameGreater[] = "Greater"; const char kNamePack[] = "Stack"; const char kNameMerge[] = "Merge"; const char kNameGeSwitch[] = "GeSwitch"; const char kNameHuberLoss[] = "HuberLoss"; const char kNameCumSum[] = "CumSum"; const char kNameHuberLossGrad[] = "HuberLossGrad"; const char kNameSparseSoftmaxCrossEntropy[] = "SparseSoftmaxCrossEntropy"; const char kNameSparseSoftmaxCrossEntropyGrad[] = "SparseSoftmaxCrossEntropyGrad"; const char kNameTopK[] = "TopK"; const char kNameSoftmaxGrad[] = "SoftmaxGrad"; const char kNameMaxPool[] = "MaxPool"; const char kNameAvgPool[] = "AvgPool"; const char kNameBatchNorm[] = "BatchNorm"; const char kNameBatchNormGrad[] = "BatchNormGrad"; const char kNameROIAlign[] = "ROIAlign"; const char kNameROIAlignGrad[] = "ROIAlignGrad"; const char kNameRandomChoiceWithMask[] = "RandomChoiceWithMask"; const char kNameAbs[] = "Abs"; const char kNameAbsGrad[] = "AbsGrad"; const char kNameBinaryCrossEntropy[] = "BinaryCrossEntropy"; const char kNameBinaryCrossEntropyGrad[] = "BinaryCrossEntropyGrad"; const char kNameSparseApplyAdagrad[] = "SparseApplyAdagrad"; const char kNameSpaceToDepth[] = "SpaceToDepth"; const char kNameDepthToSpace[] = "DepthToSpace"; const char kNameSign[] = "Sign"; const char kNameLARSUpdate[] = "LARSUpdate"; const char kNameRound[] = "Round"; const char kNamePrint[] = "Print"; const char kNameApplyFtrl[] = "ApplyFtrl"; const char kNameDiag[] = "Diag"; const char kNameDiagPart[] = "DiagPart"; const char kNameSpaceToBatch[] = "SpaceToBatch"; const char kNameBatchToSpace[] = "BatchToSpace"; const char kNameAtan2[] = "Atan2"; const char kNameApplyRMSProp[] = "ApplyRMSProp"; const char kNameApplyCenteredRMSProp[] = "ApplyCenteredRMSProp"; // -----------------OpAdapter initialization-------------- std::unordered_map &DfGraphConvertor::get_adpt_map() { static std::unordered_map adpt_map = { {string(kNameCustomOp), ADPT_DESC(Operator)}, {string(kNameIOU), ADPT_DESC(Iou)}, {string(kNameGreaterEqual), ADPT_DESC(GreaterEqual)}, {string(kNameSlice), ADPT_DESC(SliceD)}, {string(kNameApplyMomentum), ADPT_DESC(ApplyMomentum)}, {string(kNameMaxPool), ADPT_DESC(MaxPool)}, {string(kNameAvgPool), ADPT_DESC(AvgPool)}, {string(kNameTopK), ADPT_DESC(TopKV2)}, {string(kNamePack), ADPT_DESC(Pack)}, {string(kNameSplitD), ADPT_DESC(SplitD)}, {string(kNameAllReduce), ADPT_DESC(HcomAllReduce)}, {string(kNameBroadcast), ADPT_DESC(HcomBroadcast)}, {string(kNameAllgather), ADPT_DESC(HcomAllGather)}, {string(kNameReduceScatter), ADPT_DESC(HcomReduceScatter)}, {string(kNameMaxPoolGrad), ADPT_DESC(MaxPoolGrad)}, {string(kNameAvgPoolGrad), ADPT_DESC(AvgPoolGrad)}, {string(kNameMaxPoolGradWithArgmax), ADPT_DESC(MaxPoolGradWithArgmax)}, {prim::kPrimAssign->name(), ADPT_DESC(Assign)}, {prim::kPrimStateSetItem->name(), ADPT_DESC(Assign)}, {prim::kPrimReluGrad->name(), ADPT_DESC(ReluGrad)}, {prim::kPrimFusedBatchNormGrad->name(), ADPT_DESC(FusedBatchNormGrad)}, {prim::kPrimBiasAddGrad->name(), ADPT_DESC(BiasAddGrad)}, {prim::kPrimConv2D->name(), ADPT_DESC(Conv2D)}, {prim::kPrimConv2DBackpropInput->name(), ADPT_DESC(Conv2DBackpropInputD)}, {prim::kPrimConv2DBackpropFilter->name(), ADPT_DESC(Conv2DBackpropFilterD)}, {prim::kPrimDepthwiseConv2dNative->name(), ADPT_DESC(DepthwiseConv2D)}, {prim::kPrimDepthwiseConv2dNativeBackpropFilter->name(), ADPT_DESC(DepthwiseConv2DBackpropFilterD)}, {prim::kPrimDepthwiseConv2dNativeBackpropInput->name(), ADPT_DESC(DepthwiseConv2DBackpropInputD)}, {prim::kPrimFusedBatchNorm->name(), ADPT_DESC(FusedBatchNorm, BatchNorm)}, {string(kNameBatchNorm), ADPT_DESC(BatchNorm)}, {string(kNameBatchNormGrad), ADPT_DESC(BatchNormGrad)}, {string(kNameReshape), ADPT_DESC(Reshape)}, {string(kNameFlattenGrad), ADPT_DESC(Reshape)}, {prim::kPrimFlatten->name(), ADPT_DESC(Flatten)}, {string(kNameAddN), ADPT_DESC(AddN)}, {string(kNameLess), ADPT_DESC(Less)}, {string(kNameSqrt), ADPT_DESC(Sqrt)}, {string(kNameRsqrt), ADPT_DESC(Rsqrt)}, {string(kNameSquare), ADPT_DESC(Square)}, {prim::kPrimTanh->name(), ADPT_DESC(Tanh)}, {prim::kPrimTanhGrad->name(), ADPT_DESC(TanhGrad)}, {string(kNameResizeNearestNeighborD), ADPT_DESC(ResizeNearestNeighborD)}, {string(kNameResizeNearestNeighborGrad), ADPT_DESC(ResizeNearestNeighborGrad)}, {string(kNameApplyAdam), ADPT_DESC(ApplyAdam)}, {string(kNameReLU6), ADPT_DESC(Relu6)}, {string(kNameReLU6Grad), ADPT_DESC(Relu6Grad)}, {string(kNameElu), ADPT_DESC(Elu)}, {string(kNameEluGrad), ADPT_DESC(EluGrad)}, {string(kNameResizeBilinearGrad), ADPT_DESC(ResizeBilinearGrad)}, {string(kNameResizeBilinear), ADPT_DESC(ResizeBilinearD)}, {string(kNameZerosLike), ADPT_DESC(ZerosLike)}, {string(kNameOnesLike), ADPT_DESC(OnesLike)}, {string(kNameScatterNdUpdate), ADPT_DESC(ScatterNdUpdate)}, {string(kNameNMSWithMask), ADPT_DESC(NMSWithMask)}, {string(kNameCheckValid), ADPT_DESC(CheckValid)}, {string(kNameSmoothL1Loss), ADPT_DESC(SmoothL1Loss)}, {string(kNameSmoothL1LossGrad), ADPT_DESC(SmoothL1LossGrad)}, {string(kNameSigmoidCrossEntropyWithLogits), ADPT_DESC(SigmoidCrossEntropyWithLogits)}, {string(kNameSigmoidCrossEntropyWithLogitsGrad), ADPT_DESC(SigmoidCrossEntropyWithLogitsGrad)}, {string(kNameScatterNdD), ADPT_DESC(ScatterNdD)}, {string(kNamePadD), ADPT_DESC(PadD)}, {string(kNameGatherNd), ADPT_DESC(GatherNd)}, {string(kNameArgmax), ADPT_DESC(ArgMaxD)}, {string(kNameArgmin), ADPT_DESC(ArgMinD)}, {string(kNameArgMaxWithValue), ADPT_DESC(ArgMaxWithValue)}, {string(kNameArgMinWithValue), ADPT_DESC(ArgMinWithValue)}, {prim::kPrimReduceSum->name(), ADPT_DESC(ReduceSumD)}, {prim::kPrimReduceMean->name(), ADPT_DESC(ReduceMeanD)}, {prim::kPrimReduceAll->name(), ADPT_DESC(ReduceAll)}, {prim::kPrimReduceMin->name(), ADPT_DESC(ReduceMinD)}, {prim::kPrimReduceMax->name(), ADPT_DESC(ReduceMaxD)}, {string(kNameLARSUpdate), ADPT_DESC(LarsV2Update)}, {string(kNameReduceProd), ADPT_DESC(ReduceProdD)}, {string(kNameCumProd), ADPT_DESC(CumprodD)}, {string(kNameMerge), ADPT_DESC(Merge)}, {string(kNameGeSwitch), ADPT_DESC(Switch)}, {string(kNameCumSum), ADPT_DESC(CumsumD)}, {prim::kPrimMul->name(), ADPT_DESC(Mul)}, {string(kNameTile), ADPT_DESC(TileD)}, {prim::kPrimOneHot->name(), ADPT_DESC(OneHot)}, {prim::kPrimGatherV2->name(), ADPT_DESC(GatherV2D)}, {string(kNameCos), ADPT_DESC(Cos)}, {string(kNameACos), ADPT_DESC(Acos)}, {string(kNameACosGrad), ADPT_DESC(AcosGrad)}, {string(kNameFloor), ADPT_DESC(Floor)}, {string(kNameFloorDiv), ADPT_DESC(FloorDiv)}, {string(kNameSin), ADPT_DESC(Sin)}, {string(kNameExp), ADPT_DESC(Exp)}, {string(kNameBoundingBoxEncode), ADPT_DESC(BoundingBoxEncode)}, {string(kNameBoundingBoxDecode), ADPT_DESC(BoundingBoxDecode)}, {prim::kPrimCast->name(), ADPT_DESC(Cast)}, {string(kNameRealDiv), ADPT_DESC(RealDiv)}, {prim::kPrimNeg->name(), ADPT_DESC(Neg)}, {prim::kPrimTranspose->name(), ADPT_DESC(TransposeD)}, {prim::kPrimSub->name(), ADPT_DESC(Sub)}, {string(kNameReciprocal), ADPT_DESC(Reciprocal)}, {prim::kPrimDropoutGenMask->name(), ADPT_DESC(DropOutGenMask)}, {string(kNameAssignAdd), ADPT_DESC(AssignAdd)}, {string(kNameAssignSub), ADPT_DESC(AssignSub)}, {prim::kPrimConcat->name(), ADPT_DESC(ConcatD)}, {string(kNamePow), ADPT_DESC(Pow)}, {string(kNameExp), ADPT_DESC(Exp)}, {string(kNameEqual), ADPT_DESC(Equal)}, {string(kNameNotEqual), ADPT_DESC(NotEqual)}, {string(kNameLog), ADPT_DESC(Log)}, {string(kNameLogicalAnd), ADPT_DESC(LogicalAnd)}, {string(kNameLogicalNot), ADPT_DESC(LogicalNot)}, {string(kNameLogicalOr), ADPT_DESC(LogicalOr)}, {string(kNameGreater), ADPT_DESC(Greater)}, {prim::kPrimMaximum->name(), ADPT_DESC(Maximum)}, {prim::kPrimRelu->name(), ADPT_DESC(Relu)}, {string(kNamePrelu), ADPT_DESC(PRelu)}, {string(kNamePreluGrad), ADPT_DESC(PReluGrad)}, {string(kNameSigmoid), ADPT_DESC(Sigmoid)}, {string(kNameSigmoidGrad), ADPT_DESC(SigmoidGrad)}, {string(kNameSGD), ADPT_DESC(SGD)}, {prim::kPrimLogSoftmaxGrad->name(), ADPT_DESC(LogSoftmaxGrad)}, {prim::kPrimMaximumGrad->name(), ADPT_DESC(MaximumGrad)}, {prim::kPrimMinimumGrad->name(), ADPT_DESC(MinimumGrad)}, {string(kNameL2Normalize), ADPT_DESC(L2Normalize)}, {string(kNameL2NormalizeGrad), ADPT_DESC(L2NormalizeGrad)}, {prim::kPrimMinimum->name(), ADPT_DESC(Minimum)}, {prim::kPrimSelect->name(), ADPT_DESC(Select)}, {string(kNameLessEqual), ADPT_DESC(LessEqual)}, {prim::kPrimLogSoftmax->name(), ADPT_DESC(LogSoftmax)}, {string(kNameTruncatedNormal), ADPT_DESC(TruncatedNormal)}, {string(kNameStridedSliceGrad), ADPT_DESC(StridedSliceGrad)}, {prim::kPrimGelu->name(), ADPT_DESC(Gelu)}, {prim::kPrimGeluGrad->name(), ADPT_DESC(GeluGrad)}, {string(kNameStridedSlice), ADPT_DESC(StridedSlice)}, {prim::kPrimUnsortedSegmentSum->name(), ADPT_DESC(UnsortedSegmentSumD)}, {string(kNameExpandDims), ADPT_DESC(ExpandDims)}, {prim::kPrimSqueeze->name(), ADPT_DESC(Squeeze)}, {prim::kPrimLayerNorm->name(), ADPT_DESC(LayerNorm)}, {prim::kPrimLayerNormGrad->name(), ADPT_DESC(LayerNormGrad)}, {string(kNameBatchMatMul), ADPT_DESC(BatchMatMul)}, {string(kNameDropoutDoMask), ADPT_DESC(DropOutDoMask)}, {string(kNameNPUGetFloatStatus), ADPT_DESC(NPUGetFloatStatus)}, {string(kNameNPUAllocFloatStatus), ADPT_DESC(NPUAllocFloatStatus)}, {string(kNameNPUClearFloatStatus), ADPT_DESC(NPUClearFloatStatus)}, {string(kNameRandomChoiceWithMask), ADPT_DESC(RandomChoiceWithMask)}, {prim::kPrimSoftmaxCrossEntropyWithLogits->name(), ADPT_DESC(SoftmaxCrossEntropyWithLogits)}, {prim::kPrimScalarSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimImageSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimTensorSummary->name(), ADPT_DESC(Summary)}, {prim::kPrimTensorAdd->name(), std::make_shared(std::make_shared>(ExtraAttr({{"mode", MakeValue(1)}})), std::make_shared>(ExtraAttr({{"mode", MakeValue(1)}})))}, {string(kNameBiasAdd), ADPT_DESC(BiasAdd)}, {prim::kPrimRelu->name(), ADPT_DESC(Relu)}, {prim::kPrimMatMul->name(), ADPT_DESC(MatMul)}, {string(kNameConst), ADPT_DESC(Constant, Const)}, {string(kNameSoftmax), ADPT_DESC(Softmax)}, {string(kNameSoftmaxGrad), ADPT_DESC(SoftmaxGrad)}, {string(kNameParam), ADPT_DESC(Data)}, {string(kNameROIAlign), ADPT_DESC(ROIAlign)}, {string(kNameROIAlignGrad), ADPT_DESC(ROIAlignGrad)}, {string(kNameAbs), ADPT_DESC(Abs)}, {string(kNameAbsGrad), ADPT_DESC(AbsGrad)}, {string(kNameBinaryCrossEntropy), ADPT_DESC(BinaryCrossEntropy)}, {string(kNameBinaryCrossEntropyGrad), ADPT_DESC(BinaryCrossEntropyGrad)}, {string(kNameSparseApplyAdagrad), ADPT_DESC(SparseApplyAdagradD)}, {string(kNameSpaceToDepth), ADPT_DESC(SpaceToDepth)}, {string(kNameDepthToSpace), ADPT_DESC(DepthToSpace)}, {string(kNameSign), ADPT_DESC(Sign)}, {string(kNameRound), ADPT_DESC(Round)}, {string(kNameApplyFtrl), ADPT_DESC(ApplyFtrl)}, {string(kNameDiag), ADPT_DESC(Diag)}, {string(kNameDiagPart), ADPT_DESC(DiagPart)}, {string(kNameSpaceToBatch), ADPT_DESC(SpaceToBatchD)}, {string(kNameBatchToSpace), ADPT_DESC(BatchToSpaceD)}, {string(kNameAtan2), ADPT_DESC(Atan2)}, {string(kNameApplyRMSProp), ADPT_DESC(ApplyRMSPropD)}, {string(kNameApplyCenteredRMSProp), ADPT_DESC(ApplyCenteredRMSProp)}}; #ifdef ENABLE_GE adpt_map[string(kNamePrint)] = ADPT_DESC(Print); #endif return adpt_map; } // ---------------implement of DfGraphConvertor------------- std::string GetCNodeFuncName(const CNodePtr cnode) { if (cnode->inputs().empty()) { return ""; } AnfNodePtr valuenode = cnode->input(0); if (valuenode->isa()) { auto value = GetValueNode(valuenode); // check whether the valuenode is primitive if (value->isa()) { return value->cast()->name(); } else { return value->ToString(); } } return ""; } PrimType GetCNodeFuncType(const CNodePtr cnode) { if (cnode->inputs().empty()) { return kPrimTypeUnknown; } AnfNodePtr valuenode = cnode->input(0); if (IsValueNode(valuenode)) { // check whether the valuenode is primitive return GetValueNode(valuenode)->prim_type(); } return kPrimTypeUnknown; } OpAdapterPtr DfGraphConvertor::FindAdapter(const AnfNodePtr node, bool train) { if (node->isa()) { auto cnode = node->cast(); std::string name = kNameCustomOp; if (!IsCustomCNode(cnode)) { name = GetCNodeFuncName(cnode); } auto it_adpt = get_adpt_map().find(name); if (it_adpt != get_adpt_map().end()) { return it_adpt->second->Get(train); } else { MS_LOG(ERROR) << "Can't find OpAdapter for " << name; } } if (node->isa()) { return get_adpt_map()[kNameConst]->Get(train); } if (node->isa()) { return get_adpt_map()[kNameParam]->Get(train); } return OpAdapterPtr(nullptr); } void DfGraphConvertor::InitLoopVar(std::vector *init_input) { if (this->training_) { GeTensorDesc desc(GeShape(), ge::FORMAT_NCHW, ge::DT_INT64); auto var_iter_num = std::make_shared("npu_runconfig/iterations_per_loop"); auto var_loop_cond = std::make_shared("npu_runconfig/loop_cond"); auto var_one = std::make_shared("npu_runconfig/one"); auto var_zero = std::make_shared("npu_runconfig/zero"); (void)var_iter_num->update_output_desc_y(desc); (void)var_loop_cond->update_output_desc_y(desc); (void)var_one->update_output_desc_y(desc); (void)var_zero->update_output_desc_y(desc); vars_["npu_runconfig/iterations_per_loop"] = var_iter_num; vars_["npu_runconfig/loop_cond"] = var_loop_cond; vars_["npu_runconfig/one"] = var_one; vars_["npu_runconfig/zero"] = var_zero; int64_t value = 0; auto const_iter_num = std::make_shared("const/npu_runconfig/iterations_per_loop"); if (ConfigManager::GetInstance().dataset_mode() == DS_GRAPH_MODE) { value = ConfigManager::GetInstance().iter_num(); } else { MS_LOG(INFO) << "Run with feed mode, the iterator number will always be 1"; value = 1; ConfigManager::GetInstance().set_iter_num(value); } value -= 1; // iteration start from 0, the max iteration number for n loop should be n-1 (void)const_iter_num->set_attr_value(GeTensor(desc, reinterpret_cast(&value), sizeof(int64_t))); auto const_loop_cond = std::make_shared("const/npu_runconfig/loop_cond"); value = 0; (void)const_loop_cond->set_attr_value(GeTensor(desc, reinterpret_cast(&value), sizeof(int64_t))); auto const_one = std::make_shared("const/npu_runconfig/one"); value = 1; (void)const_one->set_attr_value(GeTensor(desc, reinterpret_cast(&value), sizeof(int64_t))); auto const_zero = std::make_shared("const/npu_runconfig/zero"); value = 0; (void)const_zero->set_attr_value(GeTensor(desc, reinterpret_cast(&value), sizeof(int64_t))); (void)const_iter_num->update_output_desc_y(desc); (void)const_loop_cond->update_output_desc_y(desc); (void)const_one->update_output_desc_y(desc); (void)const_zero->update_output_desc_y(desc); auto assign_iter_num = std::make_shared("assign/npu_runconfig/iterations_per_loop"); (void)assign_iter_num->set_input_ref(*var_iter_num).set_input_value(*const_iter_num); auto assign_loop_cond = std::make_shared("assign/npu_runconfig/loop_cond"); (void)assign_loop_cond->set_input_ref(*var_loop_cond).set_input_value(*const_loop_cond); auto assign_one = std::make_shared("assign/npu_runconfig/one"); (void)assign_one->set_input_ref(*var_one).set_input_value(*const_one); auto assign_zero = std::make_shared("assign/npu_runconfig/zero"); (void)assign_zero->set_input_ref(*var_zero).set_input_value(*const_zero); init_input->push_back(*var_iter_num); init_input->push_back(*var_loop_cond); init_input->push_back(*var_one); init_input->push_back(*var_zero); init_ops_.push_back(var_iter_num); init_ops_.push_back(var_loop_cond); init_ops_.push_back(var_one); init_ops_.push_back(var_zero); init_ops_.push_back(const_iter_num); init_ops_.push_back(const_loop_cond); init_ops_.push_back(const_one); init_ops_.push_back(const_zero); init_ops_.push_back(assign_iter_num); init_ops_.push_back(assign_loop_cond); init_ops_.push_back(assign_one); init_ops_.push_back(assign_zero); } } OpAdapterPtr DfGraphConvertor::FindAdapter(const std::string &name, bool train) { auto it = get_adpt_map().find(name); if (it != get_adpt_map().end()) { return it->second->Get(train); } MS_LOG(ERROR) << "Can't find OpAdapter for " << name; return transform::OpAdapterPtr(nullptr); } void DfGraphConvertor::DrawParamInitSubGraph(const std::string &name, const AnfNodePtr &it) { // draw init subgraph init_sout_ << "op_assign" << it.get() << "[label=<"; init_sout_ << "" << endl; init_sout_ << ""; init_sout_ << ""; init_sout_ << ""; init_sout_ << "" << endl; init_sout_ << "" << endl; init_sout_ << "
resourcevalue
" << "\"assign_" << name << "\"
> shape=plaintext]" << endl; init_sout_ << "param" << it.get() << "[shape=octagon, label=\"" << name << "\"]" << endl; init_sout_ << "const" << it.get() << "[label= \"" << name << "_const" << "\" shape=ellipse]" << endl; init_sout_ << "param" << it.get() << "->" << "op_assign" << it.get() << ":1" << endl; init_sout_ << "const" << it.get() << "->" << "op_assign" << it.get() << ":2" << endl; } void DfGraphConvertor::SetupParamInitSubGraph(const TensorOrderMap &tensors, std::vector *init_input) { DfGraphPtr init_graph = std::make_shared("init"); std::vector nodes = TopoSort(anf_graph_->get_return()); for (auto &it : nodes) { if (it->isa()) { if (IsValueNode(it)) { auto symbolic = GetValueNode(it); auto name = std::static_pointer_cast(symbolic->node())->name(); auto iter = vars_.find(name); // get correspoding varaible op if (iter != vars_.end()) { op_cache_[it.get()] = iter->second; // #ifdef DRAW_GE_GRAPH compute_sout_ << op_draw_name_[params_[name].get()] << " -> " << op_draw_name_[it.get()] << "[style=\"dotted\"]" << endl; // #endif } } else if (IsValueNode(it)) { auto refkey = GetValueNode(it); auto name = refkey->tag(); auto iter = vars_.find(name); // get correspoding varaible op if (iter != vars_.end()) { op_cache_[it.get()] = iter->second; compute_sout_ << op_draw_name_[params_[name].get()] << " -> " << op_draw_name_[it.get()] << "[style=\"dotted\"]" << endl; } } } } for (auto &it : tensors) { if (vars_.find(it.first) == vars_.end()) { MS_LOG(WARNING) << "Init parameter " << it.first << " didn't appear in graph."; vars_[it.first] = nullptr; } } // set up init sub graph if (init_input->size()) { // init sub graph needs no input MS_LOG(INFO) << "Build data init subgraph."; (void)init_graph->SetInputs(*init_input); this->init_graph_ = init_graph; } else { this->init_graph_ = nullptr; } } void DfGraphConvertor::MakeDatasetHandler(const std::string &name, const size_t &input_idx, const AnfNodePtr &it) { MS_LOG(INFO) << "The " << name << " is the " << input_idx << "(st/nd/th) input"; if (ConfigManager::GetInstance().dataset_mode() == DS_GRAPH_MODE) { auto getnext_idx = static_cast(input_idx); DatasetGraphParam param = ConfigManager::GetInstance().dataset_param(); if (!param.input_indexes().empty() && input_idx <= param.input_indexes().size()) { getnext_idx = param.input_indexes()[input_idx] - 1; // input_idx start from 0. MS_LOG(INFO) << "remap input_index:" << input_idx << " to getnext_index:" << getnext_idx << "."; } // use iterator_getnext op with output_name instead of data op in BuildGraph. out_handle_cache_[it.get()] = OutHandler(dataset_iter_getnext_, "y" + std::to_string(getnext_idx)); } } void DfGraphConvertor::SetupBroadcast(const std::shared_ptr &broadcast, const std::vector &broadcast_desc, const DfGraphPtr &broadcast_graph, std::vector broadcast_input) { MS_LOG(INFO) << "build broadcast subgraph"; if (broadcast_desc.size() != broadcast_input.size()) { MS_LOG(EXCEPTION) << "Desc number of BroadCast is not equal to number of Input"; } (void)broadcast->create_dynamic_input_x(static_cast(broadcast_input.size())); (void)broadcast->create_dynamic_output_y(static_cast(broadcast_desc.size())); for (unsigned int i = 0; i < broadcast_input.size(); i++) { (void)broadcast->set_dynamic_input_x(i, broadcast_input[i]); (void)broadcast->update_dynamic_output_desc_y(i, broadcast_desc[i]); } (void)broadcast_graph->SetInputs(broadcast_input); this->broadcast_graph_ = broadcast_graph; } void DfGraphConvertor::InitParamWithData(const TensorOrderMap &tensors) { int index = 0; std::vector init_input; for (auto it : tensors) { std::string name = it.first; auto node_itor = params_.find(name); // if name not in params_, create a node in graph if (node_itor == params_.end()) { MS_LOG(WARNING) << "" << name << " is not in params, and create a new node."; ParameterPtr param = anf_graph_->add_parameter(); name = name + "_temp"; param->set_name(name); (void)ConvertParameter(param); node_itor = params_.find(name); } auto node = node_itor->second; auto op_itor = op_cache_.find(node.get()); if (op_itor == op_cache_.end()) { MS_LOG(EXCEPTION) << "Can not find op for node " << node->ToString() << "."; } auto adpt = FindAdapter(kNameParam, training_); if (adpt == nullptr) continue; auto param_op = adpt->generate(name + "_data"); MS_LOG(INFO) << "Add parameter " << name << " as input, index " << index << "."; (void)std::static_pointer_cast(param_op)->set_attr_index(index++); if (!training_) { auto adpt_const = FindAdapter(kNameConst, training_); if (adpt_const == nullptr) continue; auto const_op = adpt_const->generate(name + "_const"); (void)adpt_const->setAttr(const_op, "value", it.second); auto const_op_desc = TransformUtil::GetGeTensorDesc(it.second->shape_c(), it.second->data_type(), kOpFormat_NCHW); if (const_op_desc == nullptr) { MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!"; continue; } (void)std::static_pointer_cast(const_op)->update_output_desc_y(*const_op_desc); vars_[name] = const_op; op_itor->second = const_op; continue; } // create tensor descriptor for output descriptor auto desc = TransformUtil::GetGeTensorDesc(it.second->shape_c(), it.second->data_type(), kOpFormat_NCHW); if (desc == nullptr) { MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!"; continue; } // we need three variable ops for each graph with same name // build init subgraph auto init_var = std::make_shared(name); auto assign_op = std::make_shared("assign_" + name); (void)init_var->update_output_desc_y(*desc); (void)assign_op->set_input_ref(*init_var).set_input_value(*param_op); init_input.push_back(*init_var); init_ops_.push_back(param_op); init_ops_.push_back(assign_op); init_ops_.push_back(init_var); auto variable = std::make_shared(name); (void)variable->update_output_desc_y(*desc); // do not use read variable while variable sink MS_LOG(DEBUG) << "InitParam, op_name = " << name << ", var = " << variable->GetName() << "."; op_itor->second = variable; // replace parameter with variable vars_[name] = variable; // prevent the variable operator from being freed DrawParamInitSubGraph(name, node); } InitLoopVar(&init_input); SetupParamInitSubGraph(tensors, &init_input); } // convert all parameter need initialize to variable DfGraphConvertor &DfGraphConvertor::InitParam(const TensorOrderMap &tensors) { size_t input_idx = 0; if (error_ != 0) { return *this; } if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) { error_ = INVALID_ARGUMENT; MS_LOG(ERROR) << "Invalid AnfGraph in InitParam."; return *this; } // Processing input with MakeDatasetHandler for (auto &it : anf_graph_->parameters()) { auto op_itor = op_cache_.find(it.get()); // converted node if (it->isa() && op_itor != op_cache_.end()) { string name = std::static_pointer_cast(it)->name(); auto tensor_itor = tensors.find(name); // in init value map if (tensor_itor == tensors.end()) { DfGraphConvertor::MakeDatasetHandler(name, input_idx, it); input_idx++; } } } InitParamWithData(tensors); init_sout_ << "}" << endl; return *this; } #if (defined ENABLE_GE) void DfGraphConvertor::BuildSaveCheckpointGraph() { std::vector graph_inputs; ge::op::Save save_op("save_parms"); int save_op_is_active = 0; size_t index = 0; string name; int32_t count_size = std::count_if(vars_.begin(), vars_.end(), [](const std::pair &it) { return (it.second == nullptr || it.first.find("/") != std::string::npos); }); (void)save_op.create_dynamic_input_tensors(vars_.size() - static_cast(count_size)); // for each "parameter" in anf graph excluding "input" for (const auto &it : vars_) { name = it.first; if (it.second == nullptr || name.find("/") != std::string::npos) continue; Variable variable(name); (void)variable.update_output_desc_y(it.second->GetOutputDesc(0)); (void)save_op.set_dynamic_input_tensors(index++, variable); graph_inputs.push_back(variable); if (save_op_is_active == 0) { checkpoint_sout_ << "op_save" << &save_op << "[label=<"; checkpoint_sout_ << "" << endl; checkpoint_sout_ << "" << endl; checkpoint_sout_ << "" << endl; checkpoint_sout_ << "
tensor
" << "\"saveop" << "\"
> shape=plaintext]" << endl; } checkpoint_sout_ << "param" << it.second << "[shape=octagon, label=\"" << name << "\"]" << endl; checkpoint_sout_ << "param" << it.second << "->" << "op_save" << &save_op << ":1" << endl; save_op_is_active = 1; } if (save_op_is_active) { std::vector graph_output; graph_output.emplace_back(save_op); DfGraphPtr checkpoint_graph = std::make_shared("checkpoint"); (void)checkpoint_graph->SetInputs(graph_inputs); (void)checkpoint_graph->SetOutputs(graph_output); this->save_ckp_graph_ = checkpoint_graph; } else { this->save_ckp_graph_ = nullptr; } checkpoint_sout_ << "}" << endl; return; } #endif DfGraphConvertor &DfGraphConvertor::GenerateBroadcastGraph(const TensorOrderMap &tensors) { if (error_ != 0) { return *this; } if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) { error_ = INVALID_ARGUMENT; MS_LOG(ERROR) << "Invalid AnfGraph in generate broadcast graph"; return *this; } DfGraphPtr broadcast_graph = std::make_shared("broadcast"); // collect the operators create for broadcast sub graph, in order to avoid auto release std::vector broadcast_input; std::vector broadcast_desc; auto broadcast = std::make_shared("broadcast_parameter"); (void)broadcast->set_attr_root_rank(0); (void)broadcast->set_attr_group("hccl_world_group"); broadcast_ops_.push_back(broadcast); // find every parameter, build broadcast subgraph (or initialize the parameter with constant) for (auto &it : anf_graph_->parameters()) { auto op_itor = op_cache_.find(it.get()); // converted node if (it->isa() && op_itor != op_cache_.end()) { string name = std::static_pointer_cast(it)->name(); auto tensor_itor = tensors.find(name); // in init tensor map if (tensor_itor != tensors.end()) { auto tensor = tensor_itor->second; auto shape_ge = tensor->shape_c(); // create tensor descriptor for output descriptor auto desc = TransformUtil::GetGeTensorDesc(shape_ge, tensor->data_type(), kOpFormat_NCHW); if (desc == nullptr) { MS_LOG(ERROR) << "Create variable " << name << " ouptut descriptor failed!"; continue; } // build broadcast subgraph if (distribute_) { auto broadcast_var = std::make_shared(name); (void)broadcast_var->update_output_desc_y(*desc); broadcast_input.push_back(*broadcast_var); broadcast_desc.push_back(*desc); broadcast_ops_.push_back(broadcast_var); } } } } // set up broadcast sub graph if (!broadcast_input.empty()) { DfGraphConvertor::SetupBroadcast(broadcast, broadcast_desc, broadcast_graph, broadcast_input); } else { this->broadcast_graph_ = nullptr; } return *this; } DfGraphConvertor &DfGraphConvertor::GenerateCheckpointGraph() { if (error_ != 0) { MS_LOG(ERROR) << "Generate checkpoint graph failed, found error code " << error_ << "."; return *this; } if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) { error_ = INVALID_ARGUMENT; MS_LOG(ERROR) << "Invalid AnfGraph in GenerateCheckpointGraph"; return *this; } #if (defined ENABLE_GE) BuildSaveCheckpointGraph(); // Restoring from checkpoint file is done by pyfront, not in graph now. #endif return *this; } DfGraphConvertor &DfGraphConvertor::ConvertAllNode() { if (error_ != 0) { return *this; } if (anf_graph_ == nullptr || anf_graph_->output() == nullptr) { MS_LOG(ERROR) << "Invalid AnfGraph"; error_ = FAILED; return *this; } compute_sout_.clear(); compute_sout_ << "digraph {" << endl; init_sout_.clear(); init_sout_ << "digraph {" << endl; checkpoint_sout_.clear(); checkpoint_sout_ << "digraph {" << endl; restore_checkpoint_sout_.clear(); restore_checkpoint_sout_ << "digraph {" << endl; // Convert all anf node to Operator MS_LOG(DEBUG) << "convert all node"; std::vector nodes = TopoSort(anf_graph_->get_return()); for (auto &it : nodes) { (void)Convert(it); if (this->error_ != 0) { MS_LOG(ERROR) << "failed to convert node: " << it->DebugString() << "."; } } // Create dataset iterator and iterator_getnext node if (ConfigManager::GetInstance().dataset_mode() == DS_GRAPH_MODE) { DatasetGraphParam param = ConfigManager::GetInstance().dataset_param(); MS_LOG(INFO) << "Dataset param is " << param.ToString() << "."; // GetNext auto iter_getnext_op = make_shared("get_next_tmp"); (void)iter_getnext_op->set_attr_output_types(param.ge_types()); (void)iter_getnext_op->set_attr_output_shapes(param.shapes()); (void)iter_getnext_op->set_attr_channel_name(param.queue_name()); // save iter_getnext_op for later use dataset_iter_getnext_ = iter_getnext_op; } // return the data flow graph return *this; } void DfGraphConvertor::TraceOutputFromTupleGetItem(const AnfNodePtr &anf_out) { auto it = out_handle_cache_.find(anf_out.get()); if (it != out_handle_cache_.end()) { OutHandler handle = it->second; auto op = handle.op; if (op != nullptr) { MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType() << ", out_name: " << handle.out; graph_outputs_.emplace_back(std::make_pair(*op, handle.out)); } else { MS_LOG(EXCEPTION) << "tuple_getitem: " << anf_out->fullname_with_scope() << " is not converted"; } } else { // invalid tuple_getitem e.g. tuple_getitem(tuple_getitem())/tuple_getitem(depend())/tuple_getitem(make_tuple()) MS_LOG(WARNING) << "Invalid tuple_getitem: " << anf_out->fullname_with_scope(); } } void DfGraphConvertor::TraceOutput(const AnfNodePtr node) { AnfNodePtr anf_out = node; AnfNodePtr pre_node = nullptr; // trace Parameter node TraceOutputFromParameter(anf_out); // then trace cnode if (!node->isa()) { return; } // trace tuple_getitem while (anf_out->isa() && IsPrimitiveCNode(anf_out, prim::kPrimTupleGetItem)) { pre_node = anf_out; anf_out = anf_out->cast()->input(1); } // trace every element of make_tuple auto c = anf_out->cast(); std::string name = ""; if (anf_out->isa()) { name = GetCNodeFuncName(c); } if (name == "make_tuple") { for (unsigned int i = 1; i < c->inputs().size(); i++) { TraceOutput(c->input(i)); } } else if (name == "depend") { if (c->inputs().size() < 3) { // "depend" primitive have 3 inputs MS_LOG(EXCEPTION) << "length of inputs is " << c->inputs().size() << ", which is less than 3"; } TraceOutput(c->input(1)); } else if (name == "tuple_getitem") { TraceOutputFromTupleGetItem(anf_out); } else { // add outputs; auto op = Convert(anf_out); std::string index; if (op != nullptr) { if ((pre_node != nullptr) && IsPrimitiveCNode(pre_node, prim::kPrimTupleGetItem)) { auto item = out_handle_cache_.find(pre_node.get()); if (item != out_handle_cache_.end()) { index = item->second.out; } else { MS_LOG(WARNING) << "Can't get operater: " << anf_out->fullname_with_scope() << " 's output item"; } } MS_LOG(INFO) << "Add graph output: " << anf_out->fullname_with_scope() << ":" << index; graph_outputs_.emplace_back(make_pair(*op, index)); } } } void DfGraphConvertor::TraceOutputFromParameter(const AnfNodePtr &anf_out) { if (anf_out->isa()) { MS_LOG(INFO) << "Add graph output: " << anf_out->fullname_with_scope(); auto it = out_handle_cache_.find(anf_out.get()); if (it != out_handle_cache_.end()) { // For dataset graph mode, input parameter is converted to a "iterator_get_next:yn" OutHandler. OutHandler handle = it->second; auto op = handle.op; MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType() << ", out_name: " << handle.out; graph_outputs_.emplace_back(make_pair(*op, handle.out)); } else { // common parameter case auto op = Convert(anf_out); if (op != nullptr) { MS_LOG(INFO) << "op name: " << op->GetName() << ", op type: " << op->GetOpType(); graph_outputs_.emplace_back(std::make_pair(*op, "")); } } } } void SetupDatasetIterGetNextNode(const OperatorPtr &op) { if (ConfigManager::GetInstance().dataset_mode() == DS_GRAPH_MODE) { DatasetGraphParam param = ConfigManager::GetInstance().dataset_param(); size_t output_num = param.ge_types().size(); MS_LOG(INFO) << "Set iterator_getnext op's output num = " << output_num << "."; // set iterator_getnext op's output num shared_ptr iter_getnext = std::static_pointer_cast(op); (void)iter_getnext->create_dynamic_output_y(static_cast(output_num)); for (uint32_t i = 0; i < output_num; i++) { ge::TensorDesc desc(GeShape(param.shapes()[i]), ge::FORMAT_NCHW, (ge::DataType)param.ge_types()[i]); // we don't SetRealDimCnt here since GE do not use this output's real-dim (void)iter_getnext->update_dynamic_output_desc_y((i), desc); } } return; } DfGraphConvertor &DfGraphConvertor::BuildGraph() { SetupDatasetIterGetNextNode(dataset_iter_getnext_); if (error_ != 0) { return *this; } // update tuple_out_handle_cache_ for (auto it : tuple_out_handle_cache_) { std::size_t len = it.second->size(); for (std::size_t i = 0; i < len; i++) { OutHandler handle = (*it.second)[i]; if (handle.op) { string name = handle.op->GetName(); if (vars_.count(name)) { OperatorPtr new_op = vars_[name]; if (new_op != nullptr) { MS_LOG(INFO) << "update tuple_out_handle_cache_ " << name; (*it.second)[i] = OutHandler(new_op, handle.out); } } } } } // set up dependices MS_LOG(DEBUG) << "set up dependices"; std::vector nodes = ::mindspore::TopoSort(anf_graph_->get_return()); for (auto &it : nodes) { SetNodeInput(it); SetOpControlInput(it); UpdateOpDesc(it); } if (error_ == 0) { df_graph_ = make_shared(anf_graph_->ToString()); } else { return *this; } // set graph input according to the order from anf graph std::vector inputs; if (ConfigManager::GetInstance().dataset_mode() == DS_GRAPH_MODE) { inputs.push_back(*dataset_iter_getnext_); } else { auto params = anf_graph_->parameters(); int index = 0; for (auto &it : params) { auto name = std::static_pointer_cast(it)->name(); // the parameters which has not been converted to var if (vars_.find(name) == vars_.end()) { auto op = Convert(it); MS_EXCEPTION_IF_NULL(op); MS_LOG(INFO) << "add not var input " << it->ToString() << ", index " << index; if (op == nullptr) { MS_LOG(ERROR) << "Convert graph failed!"; return *this; } UpdateDataOpDesc(it, op); MS_LOG(INFO) << "add input " << it->ToString() << ", index " << index; (void)std::static_pointer_cast(op)->set_attr_index(index++); inputs.push_back(*op); } else if (vars_[name] != nullptr) { MS_LOG(INFO) << "add var input " << it->ToString(); auto op = Convert(it); MS_EXCEPTION_IF_NULL(op); inputs.push_back(*op); } } } // Add const nodes as graph input for some operator work with constant std::transform(graph_const_inputs_.begin(), graph_const_inputs_.end(), std::back_inserter(inputs), [](OperatorPtr x) { return *x; }); MS_LOG(INFO) << "set graph input num: " << inputs.size(); (void)df_graph_->SetInputs(inputs); // set graph output // set the value of finale return apply node as the output of dataflow graph MS_LOG(DEBUG) << "set output"; graph_outputs_.clear(); TraceOutput(anf_graph_->get_return()->input(1)); MS_LOG(INFO) << "set graph output num: " << graph_outputs_.size(); (void)df_graph_->SetOutputs(graph_outputs_); compute_sout_ << "}" << endl; // For the graph(e.g. eval_subgraph) whose IterNum is 1, donot set NeedIteration flag. if (ConfigManager::GetInstance().iter_num() > 1) { df_graph_->SetNeedIteration(true); } return *this; } void DfGraphConvertor::UpdateDataOpDesc(const AnfNodePtr &it, const OperatorPtr &op) const { auto node = std::static_pointer_cast(it); if (node == nullptr) { MS_LOG(ERROR) << "Update data op descriptor failed! Invalid node."; return; } auto normal_shape_ptr = dyn_cast(node->Shape()); vector shape; if (normal_shape_ptr == nullptr) { MS_LOG(INFO) << "Invalid shape to update data op descriptor."; return; } shape = normal_shape_ptr->shape(); if (node->Type() == nullptr) { MS_LOG(INFO) << "Invalid type to update data op descriptor."; return; } TypeId me_type = node->Type()->type_id(); if (kObjectTypeTensorType == me_type) { me_type = dyn_cast(node->Type())->element()->type_id(); } std::ostringstream buf; buf << "[" << shape << "]"; MS_LOG(INFO) << "input shape is " << buf.str() << ", type is " << me_type; auto desc = TransformUtil::GetGeTensorDesc(shape, me_type, "NCHW"); if (desc == nullptr) { MS_LOG(ERROR) << "Update data op descriptor failed! TensorDesc is null."; } else { (void)std::static_pointer_cast(op)->update_input_desc_data(*desc); (void)std::static_pointer_cast(op)->update_output_desc_out(*desc); } } DfGraphPtr DfGraphConvertor::GetComputeGraph() { return df_graph_; } DfGraphPtr DfGraphConvertor::GetInitGraph() { return init_graph_; } DfGraphPtr DfGraphConvertor::GetSaveCheckpointGraph() { return save_ckp_graph_; } DfGraphPtr DfGraphConvertor::GetBroadcastGraph() { return broadcast_graph_; } void DfGraphConvertor::SetOpControlInput(const AnfNodePtr node) { if (control_depend_cache_.find(node.get()) == control_depend_cache_.end()) { return; } std::vector control_edges = control_depend_cache_[node.get()]; if ((control_edges.empty())) { MS_LOG(ERROR) << "Get control depend node's src or dest operator failed"; return; } for (auto &item : control_edges) { (void)item.dest_op->AddControlInput(*item.src_op); } } void DfGraphConvertor::SetOpInput(const OpAdapterPtr &adpt, const CNodePtr &node) { OperatorPtr src = Convert(node); auto &inputs = node->inputs(); for (size_t i = 1; i < inputs.size(); i++) { auto pred = inputs[i]; while (pred->isa() && GetCNodeFuncName(pred->cast()) == "depend") { pred = pred->cast()->input(1); } // skip the None input if (IsValueNode(pred)) { continue; } // find in out_hadnle_cache_ first auto it = out_handle_cache_.find(pred.get()); if (it != out_handle_cache_.end()) { int ret = adpt->setInput(src, SizeToInt(i), it->second); if (ret == 0) { if (pred->isa() && GetCNodeFuncName(pred->cast()) == "tuple_getitem") { compute_sout_ << op_draw_name_[pred->cast()->input(1).get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl; } else if (pred->isa()) { compute_sout_ << op_draw_name_[pred.get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl; } else { // don't draw anything. MS_LOG(INFO) << "DRAW_GE_GRAPH: Shouldn't have this case."; } AddGraphConstInput(it->second.op); } } else if (tuple_out_handle_cache_.find(pred.get()) != tuple_out_handle_cache_.end()) { std::shared_ptr> handler_vec = tuple_out_handle_cache_[pred.get()]; int ret = adpt->setInput(src, SizeToInt(i), handler_vec); if ((ret == 0) && pred->isa() && (pred->cast()->inputs().size() == handler_vec->size() + 1)) { for (unsigned int j = 0; j < handler_vec->size(); j++) { compute_sout_ << op_draw_name_[pred->cast()->input(j + 1).get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl; AddGraphConstInput(handler_vec->at(j).op); } } else { MS_LOG(WARNING) << "Convert tuple node setInput failed : " << node->ToString(); } } else { auto op = Convert(pred); int ret = adpt->setInput(src, SizeToInt(i), op); if (ret == 0) { compute_sout_ << op_draw_name_[pred.get()] << " -> " << op_draw_name_[node.get()] << ":" << i << endl; AddGraphConstInput(op); } } } } void DfGraphConvertor::AddGraphConstInput(const OperatorPtr &op) { if (op->GetOpType() == "Constant") { graph_const_inputs_.push_back(op); } } void DfGraphConvertor::SetNodeInput(const AnfNodePtr node) { if (!node->isa()) { return; } if (op_cache_.find(node.get()) == op_cache_.end()) { return; } auto cnode = node->cast(); OpAdapterPtr adpt = FindAdapter(cnode, training_); if (adpt == nullptr) { error_ = NOT_FOUND; return; } // get Operator from op_cache_, use adapter to set Inputs DfGraphConvertor::SetOpInput(adpt, cnode); } // Update GE op's shape and type info void DfGraphConvertor::UpdateOpDesc(const AnfNodePtr node) { if (nullptr == node || !node->isa()) { return; } if (op_cache_.find(node.get()) == op_cache_.end()) { return; } OpAdapterPtr adpt = FindAdapter(node, training_); if (adpt == nullptr) { error_ = NOT_FOUND; return; } // get Operator from op_cache_ OperatorPtr op = Convert(node); adpt->updateOutputDesc(op, node->Shape(), node->Type(), node); } OperatorPtr DfGraphConvertor::Convert(const AnfNodePtr node) { if (node == nullptr) { MS_LOG(ERROR) << "node is nullptr"; error_ = NOT_FOUND; return nullptr; } // find in cache if (op_cache_.count(node.get())) { return op_cache_[node.get()]; } // do not convert primitive node if (IsValueNode(node)) { return nullptr; } // convert a new one if (node->isa()) { return ConvertCNode(node->cast()); } if (node->isa()) { return ConvertParameter(node); } if (node->isa()) { return ConvertValueNode(node->cast()); } MS_LOG(ERROR) << "Invalide AnfNode"; error_ = INVALID_ARGUMENT; return nullptr; } void DfGraphConvertor::ConvertMakeTuple(const CNodePtr node) { std::shared_ptr> tuple_items = std::make_shared>(); // convert each tuple item to a OutHandler for (size_t i = 1; i < node->inputs().size(); i++) { AnfNodePtr item = node->input(i); OperatorPtr op = Convert(item); if (op != nullptr) { tuple_items->emplace_back(OutHandler(op, "")); } else if (out_handle_cache_.find(item.get()) != out_handle_cache_.end()) { tuple_items->push_back(out_handle_cache_[item.get()]); } else { MS_LOG(WARNING) << "This anf node is not supported as a tuple item : " << item->ToString(); return; } } tuple_out_handle_cache_[node.get()] = tuple_items; } AnfNodePtr DfGraphConvertor::TraceTupleGetItem(const CNodePtr &node, unsigned int *index) { const int TUPLE_GET_ITEM_INDEX = 2; if (node->inputs().size() < 3) { // "tuple_getitem" primitive must have 3 inputs MS_LOG(EXCEPTION) << "length of inputs of TupleGetItem is less than 3"; } auto index_node = node->inputs()[TUPLE_GET_ITEM_INDEX]; if (!index_node->isa()) { error_ = INVALID_ARGUMENT; MS_LOG(EXCEPTION) << "can't convert get item with non-constant index"; } *index = IntToUint(GetValue(GetValueNode(index_node))); return node->inputs()[1]; } AnfNodePtr DfGraphConvertor::TraceDepend(const CNodePtr &node) { auto cnode = node->cast(); if (cnode->inputs().size() < 3) { // "depend" primitive have 3 inputs MS_LOG(EXCEPTION) << "length of inputs of depend is less than 3"; } return cnode->inputs()[1]; } AnfNodePtr DfGraphConvertor::TraceMakeTuple(const CNodePtr &node, unsigned int index) { if (index + 1 >= node->inputs().size()) { MS_LOG(EXCEPTION) << "length of make_tuple is less than index: " << index; } return node->inputs()[index + 1]; } OutHandler DfGraphConvertor::GetHandler(const AnfNodePtr &node, const std::stack &index_stack, AnfNode *const draw_index) { if (node == nullptr) { MS_LOG(ERROR) << "Get nullptr while trace real op"; return OutHandler(nullptr, ""); } std::ostringstream ss; ss << "op" << node.get(); if (index_stack.empty()) { op_draw_name_[draw_index] = ss.str(); return OutHandler(Convert(node), ""); } else { OpAdapterPtr adpt = FindAdapter(node, training_); if (nullptr == adpt) { MS_LOG(ERROR) << "Can not get node output as adpt is nullptr!"; error_ = NOT_FOUND; return OutHandler(nullptr, ""); } OperatorPtr op = Convert(node); if (op == nullptr) { error_ = NOT_FOUND; MS_LOG(ERROR) << "Can not convert node for trace real op"; return OutHandler(nullptr, ""); } op_draw_name_[draw_index] = ss.str(); return adpt->getOutput(Convert(node), UintToInt(index_stack.top())); } } // get the real operator through maketuple tuple_getitem depend OutHandler DfGraphConvertor::TraceRealOp(AnfNodePtr node) { bool flag = IsPrimitiveCNode(node, prim::kPrimTupleGetItem) || IsPrimitiveCNode(node, prim::kPrimMakeTuple) || IsPrimitiveCNode(node, prim::kPrimDepend); std::stack index_stack; auto draw_index = node.get(); while (flag) { flag = false; if (IsPrimitiveCNode(node, prim::kPrimTupleGetItem)) { unsigned int index; node = TraceTupleGetItem(node->cast(), &index); index_stack.push(index); flag = true; } else if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) { if (index_stack.empty()) { MS_LOG(ERROR) << "TraceRealOp find a make_tuple node"; return OutHandler(nullptr, ""); } else { node = TraceMakeTuple(node->cast(), index_stack.top()); index_stack.pop(); flag = true; } } else if (IsPrimitiveCNode(node, prim::kPrimDepend)) { node = TraceDepend(node->cast()); flag = true; } } return GetHandler(node, index_stack, draw_index); } void DfGraphConvertor::ConvertTupleGetItem(const CNodePtr node) { auto handle = TraceRealOp(node); if (handle.op == nullptr) { MS_LOG(ERROR) << "Failed to trace tuple get item"; return; } out_handle_cache_[node.get()] = handle; } // Get the real op for tuple_getitem through make tuple, or depend AnfNodePtr DfGraphConvertor::GetRealOpNode(AnfNodePtr node) { const int TUPLE_GET_ITEM_INDEX = 2; if (IsPrimitiveCNode(node, prim::kPrimTupleGetItem)) { auto node_inputs = node->cast()->inputs(); if (node_inputs.size() != 3) { // "tuple_getitem" primitive must have 3 inputs MS_LOG(ERROR) << "tuple get item node not correct!"; error_ = FAILED; return node; } MS_EXCEPTION_IF_NULL(node_inputs[TUPLE_GET_ITEM_INDEX]); if (!node_inputs[TUPLE_GET_ITEM_INDEX]->isa()) { error_ = INVALID_ARGUMENT; MS_LOG(EXCEPTION) << "can't convert get item with non-constant index"; } auto value_ptr = GetValueNode(node_inputs[TUPLE_GET_ITEM_INDEX])->cast(); if (value_ptr == nullptr) { MS_LOG(ERROR) << "Can not convert get item as value is nullptr!"; error_ = FAILED; return node; } int index = value_ptr->value(); // make_tuple apply inputs:make_tuple, [tuple_items,] if (IsPrimitiveCNode(node_inputs[1], prim::kPrimMakeTuple)) { auto tuple_inputs = node->cast()->inputs(); if (tuple_inputs.size() < IntToSize(index + 1)) { MS_LOG(ERROR) << "make tuple input items node not correct! size:" << tuple_inputs.size() << ", item index:" << index; error_ = FAILED; return node; } return GetRealOpNode(tuple_inputs[IntToSize(index + 1)]); } return GetRealOpNode(node_inputs[1]); } // depend apply inputs: depend,output,depended_node if (IsPrimitiveCNode(node, prim::kPrimDepend)) { auto depend_inputs = node->cast()->inputs(); if (depend_inputs.size() != 3) { // "depend" primitive have 3 inputs MS_LOG(ERROR) << "depend input items not correct"; error_ = FAILED; return node; } return GetRealOpNode(depend_inputs[1]); } return node; } // convert the anf node to corresponding operator list std::vector DfGraphConvertor::ConvertDependNode(const AnfNodePtr node) { if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) { std::vector op_lists; auto node_inputs = node->cast()->inputs(); for (size_t index = 1; index < node_inputs.size(); index++) { auto op = Convert(GetRealOpNode(node_inputs[index])); if (op == nullptr) { MS_LOG(ERROR) << "Convert control depend node to operator failed"; error_ = FAILED; return std::vector({}); } op_lists.push_back(op); } return op_lists; } auto op = Convert(GetRealOpNode(node)); if (op == nullptr) { MS_LOG(ERROR) << "Convert control depend node to operator failed"; error_ = FAILED; return std::vector({}); } return std::vector({op}); } // get the anf node list for depend std::vector DfGraphConvertor::GetDependNodes(const AnfNodePtr &node) { std::vector nodes; // for make tuple, should control depend on the tuple items if (IsPrimitiveCNode(node, prim::kPrimMakeTuple)) { auto node_inputs = node->cast()->inputs(); for (size_t index = 1; index < node_inputs.size(); index++) { nodes.push_back(GetRealOpNode(node_inputs[index])); } return nodes; } // for parameter ,find the apply that used the parameter as the control depended node if (node->isa()) { auto uses = node->func_graph()->manager()->node_users()[node]; for (auto &use : uses) { auto use_node = use.first; if ((use_node->isa()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend))) { nodes.push_back(GetRealOpNode(use_node)); } } return nodes; } nodes.push_back(GetRealOpNode(node)); return nodes; } void DfGraphConvertor::DrawControlDepend(const AnfNodePtr &src_node, const AnfNodePtr &dest_node) { #ifdef DRAW_GE_GRAPH auto src_depend_nodes = GetDependNodes(src_node); auto dst_depend_nodes = GetDependNodes(dest_node); if (src_depend_nodes.size() == 1 && dst_depend_nodes.size() > 1) { for (auto &item : dst_depend_nodes) { compute_sout_ << op_draw_name_[src_depend_nodes[0].get()] << " -> " << op_draw_name_[item.get()] << "[style=\"dotted\"]" << endl; } } else if (src_depend_nodes.size() > 1 && dst_depend_nodes.size() == 1) { for (auto &item : src_depend_nodes) { compute_sout_ << op_draw_name_[item.get()] << " -> " << op_draw_name_[dst_depend_nodes[0].get()] << "[style=\"dotted\"]" << endl; } } else if (src_depend_nodes.size() == 1 && dst_depend_nodes.size() == 1) { compute_sout_ << op_draw_name_[src_depend_nodes[0].get()] << " -> " << op_draw_name_[dst_depend_nodes[0].get()] << "[style=\"dotted\"]" << endl; } #endif } void DfGraphConvertor::GetDependOnParameterUse(const CNodePtr &node, const AnfNodePtr &src_node, const AnfNodePtr &dest_node, const std::shared_ptr> &src_ops_list, const std::shared_ptr> &dst_ops_list) { if (src_node->isa()) { auto uses = node->func_graph()->manager()->node_users()[src_node]; for (auto &use : uses) { auto use_node = use.first; if ((use_node->isa()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend)) && (!IsPrimitiveCNode(use_node, prim::kPrimMakeTuple))) { auto converted_list = ConvertDependNode(use_node); src_ops_list->insert(src_ops_list->end(), converted_list.begin(), converted_list.end()); } } } if (dest_node->isa()) { auto uses = node->func_graph()->manager()->node_users()[dest_node]; for (auto &use : uses) { auto use_node = use.first; if ((use_node->isa()) && (!IsPrimitiveCNode(use_node, prim::kPrimControlDepend)) && (!IsPrimitiveCNode(use_node, prim::kPrimMakeTuple))) { auto converted_list = ConvertDependNode(use_node); dst_ops_list->insert(dst_ops_list->end(), converted_list.begin(), converted_list.end()); } } } } bool DfGraphConvertor::GetControlDependList(const CNodePtr &node, const std::shared_ptr> &src_ops_list, const std::shared_ptr> &dst_ops_list) { const int CONTROL_DEPEND_INDEX = 0; const int SRC_NODE_INDEX = 1; const int DEST_NODE_INDEX = 2; const int DEPEND_MODE_NORMAL_USE = 0; const int DEPEND_MODE_ON_PARAMETER_USE = 1; auto node_inputs = node->inputs(); if (node_inputs.size() <= DEST_NODE_INDEX) { MS_LOG(WARNING) << "Control depend node input size error"; return false; } auto src_node = node_inputs[SRC_NODE_INDEX]; auto dest_node = node_inputs[DEST_NODE_INDEX]; if ((src_node == nullptr) || (dest_node == nullptr)) { MS_LOG(ERROR) << "Control depend node miss src or dest node"; error_ = FAILED; return false; } AnfNodePtr fn = node_inputs[CONTROL_DEPEND_INDEX]; PrimitivePtr prim_ptr = GetValueNode(fn); ValuePtr mode_ptr = prim_ptr->GetAttr("depend_mode"); int depend_mode = DEPEND_MODE_NORMAL_USE; if (mode_ptr != nullptr) { auto mode_int = mode_ptr->cast(); MS_EXCEPTION_IF_NULL(mode_int); depend_mode = mode_int->value(); MS_LOG(DEBUG) << "depend_mode = " << depend_mode; } if (depend_mode == DEPEND_MODE_ON_PARAMETER_USE) { GetDependOnParameterUse(node, src_node, dest_node, src_ops_list, dst_ops_list); } if (src_node->isa()) { auto converted_list = ConvertDependNode(src_node); src_ops_list->insert(src_ops_list->end(), converted_list.begin(), converted_list.end()); } if (dest_node->isa()) { auto converted_list = ConvertDependNode(dest_node); dst_ops_list->insert(dst_ops_list->end(), converted_list.begin(), converted_list.end()); } if (src_ops_list->empty() || dst_ops_list->empty()) { MS_LOG(WARNING) << "Control depend node's src or dest node is not a apply node, ignore it"; error_ = SUCCESS; } return true; } void DfGraphConvertor::ConvertControlDependNode(const CNodePtr node) { const int SRC_NODE_INDEX = 1; const int DEST_NODE_INDEX = 2; if (control_depend_cache_.find(node.get()) != control_depend_cache_.end()) { return; } auto node_inputs = node->inputs(); if (node_inputs.size() <= DEST_NODE_INDEX) { MS_LOG(WARNING) << "Control depend node input size error"; return; } auto src_node = node_inputs[SRC_NODE_INDEX]; auto dest_node = node_inputs[DEST_NODE_INDEX]; if ((src_node == nullptr) || (dest_node == nullptr)) { MS_LOG(ERROR) << "Control depend node miss src or dest node"; error_ = FAILED; return; } std::shared_ptr> src_ops_list = std::make_shared>(); std::shared_ptr> dst_ops_list = std::make_shared>(); if (!GetControlDependList(node, src_ops_list, dst_ops_list)) { MS_LOG(ERROR) << "Get depend list failed"; error_ = FAILED; return; } std::vector control_edges; if (src_ops_list->size() == 1 && dst_ops_list->size() > 1) { (void)std::transform(dst_ops_list->begin(), dst_ops_list->end(), std::back_inserter(control_edges), [src_ops_list](const OperatorPtr &op) -> ControlEdge { return {(*src_ops_list)[0], op}; }); } else if (src_ops_list->size() > 1 && dst_ops_list->size() == 1) { (void)std::transform(src_ops_list->begin(), src_ops_list->end(), std::back_inserter(control_edges), [dst_ops_list](const OperatorPtr &op) -> ControlEdge { return {op, (*dst_ops_list)[0]}; }); } else if (src_ops_list->size() == 1 && dst_ops_list->size() == 1) { control_edges.push_back({(*src_ops_list)[0], (*dst_ops_list)[0]}); } else { MS_LOG(ERROR) << "Convert control depend node to operator failed, depend src:" << src_ops_list->size() << " -> dst:" << dst_ops_list->size(); error_ = FAILED; return; } control_depend_cache_[node.get()] = control_edges; #ifdef DRAW_GE_GRAPH DrawControlDepend(src_node, dest_node); #endif } bool DfGraphConvertor::CheckCNode(const std::string &name, const CNodePtr node) { // ignore apply node of return if (name == "return" || name == "depend") { return false; } // make_tuple is used for a dynamic_input, convert it to a vector of OutHandlers if (name == "make_tuple") { ConvertMakeTuple(node); return false; } // As for nodes with multi outputs, convert tuple_getitem to OutHandle if (name == "tuple_getitem") { ConvertTupleGetItem(node); return false; } if (name == "ControlDepend") { ConvertControlDependNode(node); return false; } return true; } OperatorPtr DfGraphConvertor::ConvertCNode(const CNodePtr node) { std::string name = GetCNodeFuncName(node); if (!CheckCNode(name, node)) { return nullptr; } // get corresponding OpAdapter OpAdapterPtr adpt = FindAdapter(node, training_); if (adpt == nullptr) { error_ = NOT_FOUND; return nullptr; } // get operator OperatorPtr op = nullptr; auto it_op = op_cache_.find(node.get()); if (it_op != op_cache_.end()) { op = it_op->second; } else { op = adpt->generate(node); } // set attribute for primitive (void)adpt->setAttr(op, node); // add into cache (void)op_cache_.insert(std::make_pair(node.get(), op)); DrawCNode(node, adpt); return op_cache_[node.get()]; } OperatorPtr DfGraphConvertor::ConvertParameter(const AnfNodePtr node) { // convert Parameter in ANF to variable in DataFlow auto op = FindAdapter(node, training_)->generate(node); op_cache_[node.get()] = op; // build index for parameter using name std::string name = std::static_pointer_cast(node)->name(); params_[name] = node; std::ostringstream ss; ss << "op" << node.get(); op_draw_name_[node.get()] = ss.str(); compute_sout_ << ss.str() << "[shape=octagon, label=\"" << name << "\"]" << endl; return op_cache_[node.get()]; } Status DfGraphConvertor::TryConvertValueNodeToMultiConst(const ValueNodePtr node) { MS_EXCEPTION_IF_NULL(node); ValuePtr value = node->value(); MS_EXCEPTION_IF_NULL(value); if (!value->isa() && !value->isa()) { return FAILED; } auto vec = value->isa() ? value->cast()->value() : value->cast()->value(); if (vec.empty()) { return FAILED; } std::shared_ptr> tuple_items = std::make_shared>(); for (size_t i = 0; i < vec.size(); i++) { MS_EXCEPTION_IF_NULL(vec[i]); if (vec[i]->isa()) { GeTensorPtr ge_tensor = transform::TransformUtil::ConvertTensor(vec[i]->cast(), kOpFormat_NCHW); auto const_op = std::make_shared(node->fullname_with_scope() + "/const/inputs/" + std::to_string(i)); (void)const_op->set_attr_value(*ge_tensor); (void)const_op->update_output_desc_y(ge_tensor->GetTensorDesc()); tuple_items->emplace_back(OutHandler(const_op, "")); } else { return FAILED; } } if (tuple_items->empty()) { return FAILED; } tuple_out_handle_cache_[node.get()] = tuple_items; return SUCCESS; } OperatorPtr DfGraphConvertor::ConvertValueNode(const ValueNodePtr node) { // convert valuenode in ANF to Const in DataFlow // find paramerte referenced by SymbolicKeyInstance of valuenode std::ostringstream ss; ss << "op" << node.get(); op_draw_name_[node.get()] = ss.str(); compute_sout_ << ss.str() << "[label= \"" << node->value()->ToString() << "\" shape=ellipse]" << endl; if (TryConvertValueNodeToMultiConst(node) == SUCCESS) { MS_LOG(INFO) << "Convert value node to multi Constant OP success"; return nullptr; } OpAdapterPtr adpt = FindAdapter(node, training_); if (adpt == nullptr) { error_ = NOT_FOUND; return nullptr; } auto op = adpt->generate(node); // set const's attrs if (adpt->setAttr(op, "value", node->value()) != 0) { MS_LOG(WARNING) << "set attr value for const failed"; } #if (defined ENABLE_GE) auto const_op = std::static_pointer_cast(op); if (const_op == nullptr) { MS_LOG(ERROR) << "Get Constant operator failed"; return nullptr; } auto ge_tensor = const_op->get_attr_value(); auto ge_desc = ge_tensor.GetTensorDesc(); (void)const_op->update_output_desc_y(ge_desc); #endif op_cache_[node.get()] = op; return op_cache_[node.get()]; } void DfGraphConvertor::DrawCNode(const CNodePtr node, const OpAdapterPtr adpt) { if (nullptr == adpt || nullptr == node) { MS_LOG(ERROR) << "Failed to draw apply node as adpt or node is nullptr!"; return; } std::ostringstream ss; ss << "op" << node.get(); op_draw_name_[node.get()] = ss.str(); compute_sout_ << ss.str() << "[label=<"; compute_sout_ << "" << endl; auto input_map = adpt->getInputMap(); auto dyn_input_map = adpt->getDynInputMap(); if (input_map.size() + dyn_input_map.size() > 0) { compute_sout_ << ""; for (auto &it : input_map) { compute_sout_ << ""; } for (auto &it : dyn_input_map) { compute_sout_ << ""; } compute_sout_ << "" << endl; } compute_sout_ << "" << endl; // print attrs' values auto atts = adpt->GetAttrsFromDrawGraph(); for (auto &it : atts) { compute_sout_ << ""; } adpt->clearAttrVect(); compute_sout_ << "
" << it.second.name << "" << it.second.name << "
\"" << node->ToString() << ":" << GetCNodeFuncName(node) << "\"
\"" << it << "\"
> shape=plaintext]" << endl; } } // namespace transform } // namespace mindspore