# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing the rescale op in DE """ import matplotlib.pyplot as plt import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as vision from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def rescale_np(image): """ Apply the rescale """ image = image / 255.0 image = image - 1.0 return image def get_rescaled(image_id): """ Reads the image using DE ops and then rescales using Numpy """ data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) num_iter = 0 for item in data1.create_dict_iterator(): image = item["image"] if num_iter == image_id: return rescale_np(image) num_iter += 1 return None def visualize(image_de_rescaled, image_np_rescaled, mse): """ visualizes the image using DE op and Numpy op """ plt.subplot(131) plt.imshow(image_de_rescaled) plt.title("DE rescale image") plt.subplot(132) plt.imshow(image_np_rescaled) plt.title("Numpy rescaled image") plt.subplot(133) plt.imshow(image_de_rescaled - image_np_rescaled) plt.title("Difference image, mse : {}".format(mse)) plt.show() def test_rescale_op(): """ Test rescale """ logger.info("Test rescale") data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # define map operations decode_op = vision.Decode() rescale_op = vision.Rescale(1.0 / 255.0, -1.0) # apply map operations on images data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=rescale_op) num_iter = 0 for item in data1.create_dict_iterator(): image_de_rescaled = item["image"] image_np_rescaled = get_rescaled(num_iter) diff = image_de_rescaled - image_np_rescaled mse = np.sum(np.power(diff, 2)) logger.info("image_{}, mse: {}".format(num_iter + 1, mse)) # Uncomment below line if you want to visualize images # visualize(image_de_rescaled, image_np_rescaled, mse) num_iter += 1 if __name__ == "__main__": test_rescale_op()