# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import argparse import numpy as np from mindspore import Tensor, context from mindspore.train.serialization import load_checkpoint, export from src.gcn import GCN from src.config import ConfigGCN context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") if __name__ == '__main__': parser = argparse.ArgumentParser(description='GCN_export') parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.') parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.') parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.') args_opt = parser.parse_args() config = ConfigGCN() if args_opt.dataset == "cora": input_dim = 1433 class_num = 7 adj = Tensor(np.zeros((2708, 2708), np.float64)) feature = Tensor(np.zeros((2708, 1433), np.float32)) else: input_dim = 3703 class_num = 6 adj = Tensor(np.zeros((3312, 3312), np.float64)) feature = Tensor(np.zeros((3312, 3703), np.float32)) gcn_net = GCN(config, input_dim, class_num) gcn_net.set_train(False) load_checkpoint(args_opt.ckpt_file, net=gcn_net) gcn_net.add_flags_recursive(fp16=True) export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR")