# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ resnext export mindir. """ import argparse import numpy as np from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export from src.config import config from src.image_classification import get_network def parse_args(): """parse_args""" parser = argparse.ArgumentParser('mindspore classification test') parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform') parser.add_argument('--pretrained', type=str, required=True, help='fully path of pretrained model to load. ' 'If it is a direction, it will test all ckpt') args, _ = parser.parse_known_args() args.image_size = config.image_size args.num_classes = config.num_classes args.image_size = list(map(int, config.image_size.split(','))) args.image_height = args.image_size[0] args.image_width = args.image_size[1] args.export_format = config.export_format args.export_file = config.export_file return args if __name__ == '__main__': args_export = parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_export.platform) net = get_network(num_classes=args_export.num_classes, platform=args_export.platform) param_dict = load_checkpoint(args_export.pretrained) load_param_into_net(net, param_dict) input_shp = [1, 3, args_export.image_height, args_export.image_width] input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) export(net, input_array, file_name=args_export.export_file, file_format=args_export.export_format)