# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test loss """ import numpy as np import mindspore from mindspore import Tensor from mindspore.ops import operations as P from mindspore.nn.loss.loss import _Loss from mindspore.nn.loss.loss import L1Loss import mindspore.context as context context.set_context(mode=context.GRAPH_MODE, device_target='GPU') class WeightedLoss(_Loss): def __init__(self, reduction='mean', weights=1.0): super(WeightedLoss, self).__init__(reduction) self.abs = P.Abs() self.weights = weights def construct(self, base, target): x = self.abs(base - target) return self.get_loss(x, self.weights) def test_WeightedLoss(): loss = WeightedLoss() input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32)) target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32)) output_data = loss(input_data, target_data) error_range = np.ones(shape=output_data.shape) * 10e-6 loss = WeightedLoss(weights=2.0) test_output = loss(input_data, target_data) diff = test_output - output_data * 2.0 assert np.all(abs(diff.asnumpy()) < error_range) loss = WeightedLoss(weights=3) test_output = loss(input_data, target_data) diff = test_output - output_data * 3 assert np.all(abs(diff.asnumpy()) < error_range) loss = WeightedLoss(weights=Tensor(np.array([[0.7, 0.3], [0.7, 0.3]]))) y_true = Tensor(np.array([[0., 1.], [0., 0.]]), mindspore.float32) y_pred = Tensor(np.array([[1., 1.], [1., 0.]]), mindspore.float32) test_data = 0.35 output = loss(y_true, y_pred) diff = test_data - output.asnumpy() assert np.all(abs(diff) < error_range) class CustomLoss(_Loss): def __init__(self, reduction='mean'): super(CustomLoss, self).__init__(reduction) self.abs = P.Abs() def construct(self, base, target): x = self.abs(base - target) return self.get_loss(x, weights=2.0) def test_CustomLoss(): loss = L1Loss() input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32)) target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32)) output_data = loss(input_data, target_data) error_range = np.ones(shape=output_data.shape) * 10e-6 customloss = CustomLoss() test_output = customloss(input_data, target_data) diff = test_output - output_data * 2.0 assert np.all(abs(diff.asnumpy()) < error_range)