# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class NetPReLU(nn.Cell): def __init__(self): super(NetPReLU, self).__init__() self.prelu = P.PReLU() def construct(self, x, weight): return self.prelu(x, weight) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_prelu_float16(): weight = Tensor(np.array([0.25]).astype(np.float16)) x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float16)) expect = np.array([[[[-0.25, 1, 10,], [1, -0.25, 1,], [10, 1, -0.25]]]]).astype(np.float16) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") prelu = NetPReLU() output = prelu(x, weight) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") prelu = NetPReLU() output = prelu(x, weight) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_prelu_float32(): weight = Tensor(np.array([0.25]).astype(np.float32)) x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) expect = np.array([[[[-0.25, 1, 10,], [1, -0.25, 1,], [10, 1, -0.25]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") prelu = NetPReLU() output = prelu(x, weight) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") prelu = NetPReLU() output = prelu(x, weight) assert (output.asnumpy() == expect).all()