# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air and onnx models################# python export.py """ import argparse import numpy as np import mindspore as ms from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg from src.alexnet import AlexNet if __name__ == '__main__': parser = argparse.ArgumentParser(description='Classification') parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], help='please choose dataset: imagenet or cifar10.') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ path where the trained ckpt file') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) if args_opt.dataset_name == 'cifar10': cfg = alexnet_cifar10_cfg elif args_opt.dataset_name == 'imagenet': cfg = alexnet_imagenet_cfg else: raise ValueError("dataset is not support.") net = AlexNet(num_classes=cfg.num_classes) param_dict = load_checkpoint(args_opt.ckpt_path) load_param_into_net(net, param_dict) input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_height, cfg.image_width]), ms.float32) export(net, input_arr, file_name=cfg.air_name, file_format="AIR")