# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############test textcnn example on movie review################# python eval.py """ import mindspore.nn as nn from mindspore.nn.metrics import Accuracy from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from utils.moxing_adapter import moxing_wrapper from utils.device_adapter import get_device_id from utils.config import config from src.textcnn import TextCNN from src.dataset import MovieReview, SST2, Subjectivity @moxing_wrapper() def eval_net(): '''eval net''' if config.dataset == 'MR': instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9) elif config.dataset == 'SUBJ': instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9) elif config.dataset == 'SST2': instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9) device_target = config.device_target context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) if device_target == "Ascend": context.set_context(device_id=get_device_id()) dataset = instance.create_test_dataset(batch_size=config.batch_size) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len, num_classes=config.num_classes, vec_length=config.vec_length) opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.001, weight_decay=float(config.weight_decay)) param_dict = load_checkpoint(config.checkpoint_file_path) print("load checkpoint from [{}].".format(config.checkpoint_file_path)) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()}) acc = model.eval(dataset) print("accuracy: ", acc) if __name__ == '__main__': eval_net()