# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """model evaluation script""" import os import argparse import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.callback import LossMonitor from mindspore.common import set_seed from src.config import textrcnn_cfg as cfg from src.dataset import create_dataset from src.textrcnn import textrcnn set_seed(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='textrcnn') parser.add_argument('--ckpt_path', type=str) args = parser.parse_args() context.set_context( mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend") device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) embedding_table = np.loadtxt(os.path.join(cfg.preprocess_path, "weight.txt")).astype(np.float32) network = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0], cell=cfg.cell, batch_size=cfg.batch_size) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) loss_cb = LossMonitor() print("============== Starting Testing ==============") ds_eval = create_dataset(cfg.preprocess_path, cfg.batch_size, False) param_dict = load_checkpoint(args.ckpt_path) load_param_into_net(network, param_dict) network.set_train(False) model = Model(network, loss, metrics={'acc': Accuracy()}, amp_level='O3') acc = model.eval(ds_eval, dataset_sink_mode=False) print("============== Accuracy:{} ==============".format(acc))