# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_criteo.""" import os import json import argparse from mindspore import context, Tensor, ParameterTuple from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn.optim import Adam from mindspore.nn import TrainOneStepCell from mindspore.train import Model from src.deepspeech2 import DeepSpeechModel, NetWithLossClass from src.lr_generator import get_lr from src.config import train_config from src.dataset import create_dataset parser = argparse.ArgumentParser(description='DeepSpeech2 training') parser.add_argument('--pre_trained_model_path', type=str, default='', help='Pretrained checkpoint path') parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training') parser.add_argument('--bidirectional', action="store_false", default=True, help='Use bidirectional RNN') parser.add_argument('--device_target', type=str, default="GPU", choices=("GPU", "CPU"), help='Device target, support GPU and CPU, Default: GPU') args = parser.parse_args() if __name__ == '__main__': rank_id = 0 group_size = 1 config = train_config data_sink = (args.device_target == "GPU") context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=False) if args.is_distributed: init('nccl') rank_id = get_rank() group_size = get_group_size() context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) with open(config.DataConfig.labels_path) as label_file: labels = json.load(label_file) ds_train = create_dataset(audio_conf=config.DataConfig.SpectConfig, manifest_filepath=config.DataConfig.train_manifest, labels=labels, normalize=True, train_mode=True, batch_size=config.DataConfig.batch_size, rank=rank_id, group_size=group_size) steps_size = ds_train.get_dataset_size() lr = get_lr(lr_init=config.OptimConfig.learning_rate, total_epochs=config.TrainingConfig.epochs, steps_per_epoch=steps_size) lr = Tensor(lr) deepspeech_net = DeepSpeechModel(batch_size=config.DataConfig.batch_size, rnn_hidden_size=config.ModelConfig.hidden_size, nb_layers=config.ModelConfig.hidden_layers, labels=labels, rnn_type=config.ModelConfig.rnn_type, audio_conf=config.DataConfig.SpectConfig, bidirectional=True, device_target=args.device_target) loss_net = NetWithLossClass(deepspeech_net) weights = ParameterTuple(deepspeech_net.trainable_params()) optimizer = Adam(weights, learning_rate=config.OptimConfig.learning_rate, eps=config.OptimConfig.epsilon, loss_scale=config.OptimConfig.loss_scale) train_net = TrainOneStepCell(loss_net, optimizer) train_net.set_train(True) if args.pre_trained_model_path != '': param_dict = load_checkpoint(args.pre_trained_model_path) load_param_into_net(train_net, param_dict) print('Successfully loading the pre-trained model') model = Model(train_net) callback_list = [TimeMonitor(steps_size), LossMonitor()] if args.is_distributed: config.CheckpointConfig.ckpt_file_name_prefix = config.CheckpointConfig.ckpt_file_name_prefix + str(get_rank()) config.CheckpointConfig.ckpt_path = os.path.join(config.CheckpointConfig.ckpt_path, 'ckpt_' + str(get_rank()) + '/') config_ck = CheckpointConfig(save_checkpoint_steps=1, keep_checkpoint_max=config.CheckpointConfig.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix=config.CheckpointConfig.ckpt_file_name_prefix, directory=config.CheckpointConfig.ckpt_path, config=config_ck) callback_list.append(ckpt_cb) model.train(config.TrainingConfig.epochs, ds_train, callbacks=callback_list, dataset_sink_mode=data_sink)