# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air models""" import argparse import numpy as np from mindspore import Tensor, context from mindspore.common import dtype as mstype from mindspore.train.serialization import export from src.utils import Dictionary from src.utils.load_weights import load_infer_weights from src.transformer.transformer_for_infer import TransformerInferModel from config import TransformerConfig parser = argparse.ArgumentParser(description="mass export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--file_name", type=str, default="mass", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") parser.add_argument('--gigaword_infer_config', type=str, required=True, help='gigaword config file') parser.add_argument('--vocab_file', type=str, required=True, help='vocabulary file') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) def get_config(config_file): tfm_config = TransformerConfig.from_json_file(config_file) tfm_config.compute_type = mstype.float16 tfm_config.dtype = mstype.float32 return tfm_config if __name__ == '__main__': vocab = Dictionary.load_from_persisted_dict(args.vocab_file) config = get_config(args.gigaword_infer_config) dec_len = config.max_decode_length tfm_model = TransformerInferModel(config=config, use_one_hot_embeddings=False) tfm_model.init_parameters_data() params = tfm_model.trainable_params() weights = load_infer_weights(config) for param in params: value = param.data name = param.name if name not in weights: raise ValueError(f'{name} is not found in weights.') with open('weight_after_deal.txt', 'a+') as f: weights_name = name f.write(weights_name + '\n') if isinstance(value, Tensor): if weights_name in weights: assert weights_name in weights param.set_data(Tensor(weights[weights_name], mstype.float32)) else: raise ValueError(f'{weights_name} is not found in checkpoint') else: raise TypeError(f'Type of {weights_name} is not Tensor') print(' | Load weights successfully.') tfm_model.set_train(False) source_ids = Tensor(np.ones((1, config.seq_length)).astype(np.int32)) source_mask = Tensor(np.ones((1, config.seq_length)).astype(np.int32)) export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)