# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """YoloV4 310 infer.""" import os import argparse import datetime import time import numpy as np from pycocotools.coco import COCO from src.logger import get_logger from eval import DetectionEngine parser = argparse.ArgumentParser('mindspore coco testing') # dataset related parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu') # logging related parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location') # detect_related parser.add_argument('--nms_thresh', type=float, default=0.5, help='threshold for NMS') parser.add_argument('--ann_file', type=str, default='', help='path to annotation') parser.add_argument('--ignore_threshold', type=float, default=0.001, help='threshold to throw low quality boxes') parser.add_argument('--img_id_file_path', type=str, default='', help='path of image dataset') parser.add_argument('--result_files', type=str, default='./result_Files', help='path to 310 infer result floder') args, _ = parser.parse_known_args() class Redirct: def __init__(self): self.content = "" def write(self, content): self.content += content def flush(self): self.content = "" if __name__ == "__main__": start_time = time.time() args.outputs_dir = os.path.join(args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, 0) # init detection engine detection = DetectionEngine(args) coco = COCO(args.ann_file) result_path = args.result_files files = os.listdir(args.img_id_file_path) for file in files: img_ids_name = file.split('.')[0] img_id = int(np.squeeze(img_ids_name)) imgIds = coco.getImgIds(imgIds=[img_id]) img = coco.loadImgs(imgIds[np.random.randint(0, len(imgIds))])[0] image_shape = ((img['width'], img['height']),) img_id = (np.squeeze(img_ids_name),) result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin") result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin") result_path_2 = os.path.join(result_path, img_ids_name + "_2.bin") output_small = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 19, 19, 3, 85) output_me = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 38, 38, 3, 85) output_big = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 76, 76, 3, 85) detection.detect([output_small, output_me, output_big], args.per_batch_size, image_shape, img_id) args.logger.info('Calculating mAP...') detection.do_nms_for_results() result_file_path = detection.write_result() args.logger.info('result file path: {}'.format(result_file_path)) eval_result = detection.get_eval_result() cost_time = time.time() - start_time args.logger.info('\n=============coco eval reulst=========\n' + eval_result) args.logger.info('testing cost time {:.2f}h'.format(cost_time / 3600.))