# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export""" import argparse import numpy as np from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.openposenet import OpenPoseNet from src.config import params parser = argparse.ArgumentParser(description="openpose export") parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="openpose", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE, save_graphs=False) # define net net = OpenPoseNet() # load checkpoint param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(net, param_dict) inputs = np.ones([args.batch_size, 3, params["insize"], params["insize"]]).astype(np.float32) export(net, Tensor(inputs), file_name=args.file_name, file_format=args.file_format)