# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Alexnet.""" import mindspore.nn as nn from mindspore.common.initializer import TruncatedNormal from mindspore.ops import operations as P def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"): weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode=pad_mode) def fc_with_initialize(input_channels, out_channels): weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): return TruncatedNormal(0.02) # 0.02 class AlexNet(nn.Cell): """ Alexnet """ def __init__(self, num_classes=10, channel=3): super(AlexNet, self).__init__() self.conv1 = conv(channel, 96, 11, stride=4) self.conv2 = conv(96, 256, 5, pad_mode="same") self.conv3 = conv(256, 384, 3, pad_mode="same") self.conv4 = conv(384, 384, 3, pad_mode="same") self.conv5 = conv(384, 256, 3, pad_mode="same") self.relu = nn.ReLU() self.max_pool2d = P.MaxPool(ksize=3, strides=2) self.flatten = nn.Flatten() self.fc1 = fc_with_initialize(6*6*256, 4096) self.fc2 = fc_with_initialize(4096, 4096) self.fc3 = fc_with_initialize(4096, num_classes) def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv3(x) x = self.relu(x) x = self.conv4(x) x = self.relu(x) x = self.conv5(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x