# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mindspore.train import Model, ParallelMode from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore import Tensor import mindspore as ms import numpy as np from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.parameter import Parameter from tests.dataset_mock import MindData from mindspore import context from mindspore.ops import functional as F from mindspore.common.initializer import initializer context.set_context(mode=context.GRAPH_MODE) class Dataset(MindData): def __init__(self, predict, label, length=3, input_num=2): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length self.input_num = input_num def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 if self.input_num == 2: return self.predict, self.label else: return self.predict, def reset(self): self.index = 0 class PReLU(nn.Cell): def __init__(self, channel=1, w=0.25): super(PReLU, self).__init__() if isinstance(w, (np.float32, float)): tmp = np.empty((channel,), dtype=np.float32) tmp.fill(w) w = Tensor(tmp) elif isinstance(w, list): w = Tensor(w) if not isinstance(w, Tensor): raise TypeError("w only support np.float32, float or Tensor type.") self.w = Parameter(initializer(w, [channel,]), name='a') self.prelu = P.PReLU() self.relu = P.ReLU().set_strategy(((1, ), )) self.sub = P.Sub().set_strategy(((1, ), (1, ))) self.assign_sub = P.AssignSub().set_strategy(((1, ), (1, ))) def construct(self, x): u = self.relu(self.w) tmp = self.sub(self.w, u) x = F.depend(x, self.assign_sub(self.w, tmp)) v = self.prelu(x, u) return v class PReLUNet(nn.Cell): def __init__(self): super(PReLUNet, self).__init__() self.prelu = PReLU(channel=256) def construct(self, x): x = self.prelu(x) return x def prelu_net(): return PReLUNet() def reshape_common(parallel_mode): batch_size = 32 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) predict = Tensor(np.ones([32, 256]), dtype=ms.float32) label = Tensor(np.ones([32]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = prelu_net() loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_prelu_cell(): reshape_common(ParallelMode.SEMI_AUTO_PARALLEL)