# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore.ops import operations as P from mindspore.nn import Cell from mindspore.common.tensor import Tensor import mindspore.context as context import numpy as np class Net(Cell): def __init__(self): super(Net, self).__init__() self.max = P.Maximum() def construct(self, x, y): return self.max(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_max(): x = Tensor(np.array([[1, 2, 3]]).astype(np.float32)) y = Tensor(np.array([[2]]).astype(np.float32)) expect = [[2, 2, 3]] error = np.ones(shape=[1, 3]) * 1.0e-5 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") max = Net() output = max(x, y) diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") max = Net() output = max(x, y) diff = output.asnumpy() - expect assert np.all(diff < error) assert np.all(-diff < error)