# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Inner operators.""" from ..._checkparam import Rel from ..._checkparam import Validator as validator from ...common import dtype as mstype from ..primitive import PrimitiveWithInfer, prim_attr_register class StridedSliceAICPU(PrimitiveWithInfer): r""" Extracts a strided slice of a tensor. Given an input tensor, this operation inserts a dimension of length 1 at the dimension. This operation extracts a fragment of size (end-begin)/stride from the given 'input_tensor'. Starting from the position specified by the begin, the fragment continues adding stride to the index until all dimensions are not less than end. Note: The stride may be negative value, which causes reverse slicing. The shape of `begin`, `end` and `strides` should be the same. Args: begin_mask (int): Starting index of the slice. Default: 0. end_mask (int): Ending index of the slice. Default: 0. ellipsis_mask (int): An int mask. Default: 0. new_axis_mask (int): An int mask. Default: 0. shrink_axis_mask (int): An int mask. Default: 0. Currently all the masks are not in used. Use default 0 only. Inputs: - **input_x** (Tensor) - The input Tensor. - **begin** (tuple[int]) - A tuple which represents the location where to start. Only constant value is allowed. - **end** (tuple[int]) - A tuple or which represents the maximum location where to stop. Only constant value is allowed. - **strides** (tuple[int]) - A tuple which represents the stride continuously added before reach the maximum location. Only constant value is allowed. Outputs: Tensor. Explain with the following example. - In the 0th dim, begin is 1, end is 2, and strides is 1, because :math:`1+1=2\geq2`, the interval is :math:`[1,2)`. Thus, return the element with :math:`index = 1` in 0th dim, i.e., [[3, 3, 3], [4, 4, 4]]. - In the 1st dim, similarly, the interval is :math:`[0,1)`. Based on the return value of the 0th dim, return the element with :math:`index = 0`, i.e., [3, 3, 3]. - In the 2nd dim, similarly, the interval is :math:`[0,3)`. Based on the return value of the 1st dim, return the element with :math:`index = 0,1,2`, i.e., [3, 3, 3]. - Finally, the output is [3, 3, 3]. Examples >>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], >>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32) >>> slice = P.StridedSliceAICPU() >>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 2)) >>> output.shape (1, 1, 2) >>> output [[[3, 3]]] """ @prim_attr_register def __init__(self, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0): """init StrideSlice""" self.init_prim_io_names(inputs=['x', 'begin', 'end', 'strides'], outputs=['output']) validator.check_value_type('begin_mask', begin_mask, [int], self.name) validator.check_value_type('end_mask', end_mask, [int], self.name) validator.check_value_type('ellipsis_mask', ellipsis_mask, [int], self.name) validator.check_value_type('new_axis_mask', new_axis_mask, [int], self.name) validator.check_value_type('shrink_axis_mask', shrink_axis_mask, [int], self.name) def __infer__(self, x, begin, end, strides): begin_v, end_v, strides_v = begin['value'], end['value'], strides['value'] validator.check_value_type("begin", begin_v, [tuple], self.name) validator.check_value_type("end", end_v, [tuple], self.name) validator.check_value_type("strides", strides_v, [tuple], self.name) x_shape = x['shape'] x_shp_len = len(x_shape) if len(begin_v) != x_shp_len or len(end_v) != x_shp_len or len(strides_v) != x_shp_len: raise ValueError(f"For \'{self.name}\' the length of begin index{begin_v}, end index{end_v} and " f"strides{strides_v} must be equal to the dims({x_shp_len}) of input.") ret_shape = [] append_dimensions = [] shrink_pos = bin(self.shrink_axis_mask)[::-1] new_pos = bin(self.new_axis_mask)[::-1] for i in range(x_shp_len): # After the integer is converted to binary, it is a str and the first two chars are the flag char '0b' if i < (len(new_pos) - 2) and new_pos[i] == '1': ret_shape.append(1) append_dimensions.append(x_shape[x_shp_len - 1 - len(append_dimensions)]) continue if i < (len(shrink_pos) - 2) and shrink_pos[i] == '1': validator.check_integer(f'begin[{i}]', begin_v[i], -x_shape[i], Rel.GE, self.name) validator.check_integer(f'begin[{i}]', begin_v[i], x_shape[i], Rel.LT, self.name) continue begin_idx = begin_v[i] end_idx = end_v[i] strides_idx = strides_v[i] if self.begin_mask: begin_idx = 0 if self.end_mask: end_idx = x_shape[i] validator.check_integer(f'begin[{i}]', begin_idx, x_shape[i], Rel.LE, self.name) validator.check_integer(f'end[{i}]', end_idx, x_shape[i], Rel.LE, self.name) validator.check_integer(f'strides[{i}]', strides_idx, 0, Rel.NE, self.name) if strides_idx > 0: # If sliced forward , end_idx >= begin_idx validator.check(f'begin[{i}]', begin_idx, f'end[{i}]', end_idx, Rel.LE) if begin_idx < 0 < end_idx: # Turn negative begin_idx into positive values begin_idx = x_shape[i] + begin_idx num_elems = (end_idx - begin_idx + strides_idx - 1) // strides_idx else: # If sliced backwards, end_idx <= begin_idx validator.check(f'begin[{i}]', begin_idx, f'end[{i}]', end_idx, Rel.GE) if end_idx < 0 < begin_idx: # Turn negative end_idx into positive values end_idx = x_shape[i] + end_idx num_elems = (end_idx - begin_idx + strides_idx + 1) // strides_idx ret_shape.append(num_elems) if append_dimensions: ret_shape += append_dimensions[::-1] return {'shape': ret_shape, 'dtype': x['dtype'], 'value': None} class ExtractImagePatches(PrimitiveWithInfer): """ Extract patches from images. The input tensor must be a 4-D tensor and the data format is NHWC. Args: ksizes (Union[tuple[int], list[int]]): The size of sliding window, should be a tuple or list of int, and the format is [1, ksize_row, ksize_col, 1]. strides (Union[tuple[int], list[int]]): Distance between the centers of the two consecutive patches, should be a tuple or list of int, and the format is [1, stride_row, stride_col, 1]. rates (Union[tuple[int], list[int]]): In each extracted patch, the gap between the corresponding dim pixel positions, should be a tuple or list of int, and the format is [1, rate_row, rate_col, 1]. padding (str): The type of padding algorithm, is a string whose value is "same" or "valid", not case sensitive. Default: "valid". - same: Means that the patch can take the part beyond the original image, and this part is filled with 0. - valid: Means that the patch area taken must be completely contained in the original image. Inputs: - **input_x** (Tensor) - A 4-D tensor whose shape is [in_batch, in_row, in_col, in_depth] and data type is number. Outputs: Tensor, a 4-D tensor whose data type is same as 'input_x', and the shape is [out_batch, out_row, out_col, out_depth], the out_batch is same as the in_batch. """ @prim_attr_register def __init__(self, ksizes, strides, rates, padding="valid"): """init""" def _check_tuple_or_list(arg_name, arg_val, prim_name): validator.check_value_type(f"{arg_name}s", ksizes, [tuple, list], self.name) if len(arg_val) != 4 or arg_val[0] != 1 or arg_val[3] != 1: raise ValueError(f"For \'{prim_name}\' the format of {arg_name}s should be [1, {arg_name}_row, " f"{arg_name}_col, 1], but got {arg_val}.") if not isinstance(arg_val[1], int) or not isinstance(arg_val[2], int) or arg_val[1] < 1 or arg_val[2] < 1: raise ValueError(f"For '{prim_name}' the {arg_name}_row and {arg_name}_col in {arg_name}s should be an " f"positive integer number, but got {arg_name}_row is {arg_val[1]}, {arg_name}_col " f"is {arg_val[2]}") _check_tuple_or_list("ksize", ksizes, self.name) _check_tuple_or_list("stride", strides, self.name) _check_tuple_or_list("rate", rates, self.name) self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name) self.add_prim_attr("padding", self.padding) def infer_shape(self, input_x): """infer shape""" in_batch, in_row, in_col, in_depth = input_x _, ksize_row, ksize_col, _ = self.ksizes _, stride_row, stride_col, _ = self.strides _, rate_row, rate_col, _ = self.rates if len(input_x) != 4: raise ValueError("The `input_x` should be a 4-D tensor, " f"but got a {len(input_x)}-D tensor whose shape is {input_x}") out_batch = in_batch out_depth = ksize_row * ksize_col * in_depth if self.padding == "VALID": out_row = \ (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1 out_col = \ (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1 else: out_row = (in_row - 1) // stride_row + 1 out_col = (in_col - 1) // stride_col + 1 out_shape = [out_batch, out_row, out_col, out_depth] return out_shape def infer_dtype(self, input_x): """infer dtype""" validator.check_tensor_type_same({"input_x": input_x}, mstype.number_type, self.name) return input_x class Range(PrimitiveWithInfer): r""" Creates a sequence of numbers. Set `input_x` as :math:`x_i` for each element, `output` as follows: .. math:: \text{output}(x_i) = x_i * \text{delta} + \text{start} Args: start (float): If `limit` is `None`, the value acts as limit in the range and first entry defaults to `0`. Otherwise, it acts as first entry in the range. limit (float): Acts as upper limit of sequence. If `None`, defaults to the value of `start` while set the first entry of the range to `0`. It can not be equal to `start`. delta (float): Increment of the range. It can not be equal to zero. Default: 1.0. Inputs: - **input_x** (Tensor) - The assistant data. A `1-D` tensor of type float32 or int32. Outputs: Tensor, has the same shape and dtype as `input_x`. Examples: >>> range = P.Range(1.0, 8.0, 2.0) >>> x = Tensor(np.array([1, 2, 3, 2]), mindspore.int32) >>> range(x) [3, 5, 7, 5] """ @prim_attr_register def __init__(self, start, limit=None, delta=1.0): self.init_prim_io_names(inputs=['x'], outputs=['y']) self.delta = validator.check_value_type("delta", delta, [float], self.name) validator.check_value_type("start", start, [float], self.name) if limit is None: self.start = 0.0 self.limit = start self.add_prim_attr("start", self.start) self.add_prim_attr("limit", self.limit) else: validator.check_value_type("limit", limit, [float], self.name) validator.check('start', self.start, 'limit', self.limit, Rel.NE, self.name) if self.delta == 0.0: raise ValueError("The input of `delta` can not be equal to zero.") if self.delta > 0.0 and self.start > self.limit: raise ValueError(f"Limit should be greater than start when delta:{self.delta} is more than zero, " f"but got start:{self.start}, limit:{self.limit}") if self.delta < 0.0 and self.start < self.limit: raise ValueError(f"Start should be greater than limit when delta:{self.delta} is less than zero, " f"but got start:{self.start}, limit:{self.limit}") def infer_shape(self, x_shape): return x_shape def infer_dtype(self, x_dtype): validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.float32, mstype.int32], self.name) return x_dtype class Quant(PrimitiveWithInfer): r""" Returns the quantized value of input_x. If `sqrt_mode` is False: .. math:: y = round(scale * x + offset) If `sqrt_mode` is True: .. math:: y = round(scale * x * scale + offset) Note: This operation only support Ascend 310 inference environment. Args: scale (float) : Specifies the scaling ratio. offset (float): Specifies the offset. sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. round_mode (str): Specifies the way to round. Should be one of ["Round", "Floor", "Ceil", "Trunc"]. Default: "Round". Inputs: - **input_x** (Tensor) : Input tensor. Its data type should be mindspore.float16 or mindspore.float32. Outputs: - Tensor: The quantized output tensor of type mindspore.int8. Examples: >>> input_x = Tensor([100.0, 150.0], mstype.float32) >>> quant = P.Quant(80.0, 0.0, False, "Round") >>> y = quant(input_x) """ @prim_attr_register def __init__(self, scale, offset, sqrt_mode=False, round_mode="Round"): self.scale = validator.check_value_type("scale", scale, [float], self.name) self.offset = validator.check_value_type("offset", offset, [float], self.name) self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) self.round_mode = validator.check_string("round_mode", round_mode, ["Round", "Floor", "Ceil", "Trunc"], self.name) def infer_shape(self, x_shape): return x_shape def infer_dtype(self, x_type): validator.check_subclass("input_x", x_type, mstype.tensor, self.name) validator.check_type_name("input_x", x_type, [mstype.float16, mstype.float32], self.name) return mstype.int8 class Dequant(PrimitiveWithInfer): r""" Returns the dequantized value of input_x. This operation will do ReLU to the dequantized value if `relu_flag` is True. If `sqrt_mode` is False: .. math:: y = x * deq\_scale If `sqrt_mode` is True: .. math:: y = x * deq\_scale * deq\_scale Note: This operation only support Ascend 310 inference environment. Args: sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. relu_flag (bool): Specifies whether to perform ReLU. Default: False. Inputs: - **input_x** (Tensor) : Input tensor. Should be mindspore.int32. - **deq_scale** (Tensor) : Specifies the scaling ratio. Data type should be mindspore.float16 or mindspore.uint64 Outputs: - Tensor: The quantized output tensor of type mindspore.float16. Examples: >>> input_x = Tensor([100.0, 150.0], mstype.float32) >>> dequant = P.Dequant(False, False) >>> y = dequant(input_x) """ @prim_attr_register def __init__(self, sqrt_mode=False, relu_flag=False): self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) self.relu_flag = validator.check_value_type("relu_flag", relu_flag, [bool], self.name) def infer_shape(self, x_shape, deq_scale_shape): return x_shape def infer_dtype(self, x_type, deq_scale_type): validator.check_subclass("x", x_type, mstype.tensor, self.name) validator.check_type_name("x", x_type, [mstype.int32], self.name) validator.check_type_name("deq_scale", deq_scale_type, [mstype.float16, mstype.uint64], self.name) return mstype.float16 class LinSpace(PrimitiveWithInfer): r""" Generates values in an interval. And return the corresponding interpolation accroding to assist. Inputs: - **assist** (Tensor[float32]) - The assist value, With shape of 0-D or 1-D. - **start** (Tensor[float32]) - The start of interval, With shape of 0-D. - **stop** (Tensor[float32]) - The end of interval, With shape of 0-D. - **num** (Tensor[int32]) - ticks number in the interval, the ticks include start and stop value. With shape of 0-D. Outputs: Tensor, has the same shape as `assist`. Examples: >>> linspace = P.LinSpace() >>> assist = Tensor([5, 5.5], mindspore.float32) >>> start = Tensor(1, mindspore.float32) >>> stop = Tensor(10, mindspore.float32) >>> num = Tensor(5, mindspore.int32) >>> output = linspace(assist, start, stop, num) [12.25, 13.375] """ @prim_attr_register def __init__(self): pass def infer_shape(self, assist, start, stop, num): return assist def infer_dtype(self, assist, start, stop, num): args = {"num": num} validator.check_tensor_type_same(args, (mstype.int32,), self.name) args = {"assist": assist, "start": start, "stop": stop} validator.check_tensor_type_same(args, (mstype.float32,), self.name) return assist class MatrixDiag(PrimitiveWithInfer): """ Returns a batched diagonal tensor with a given batched diagonal values. Inputs: - **x** (Tensor) - A tensor which to be element-wise multi by `assist`. It can be of the following data types: float32, float16, int32, int8, uint8. - **assist** (Tensor) - A eye tensor of the same type as `x`. It's rank must greater than or equal to 2 and it's last dimension must equal to the second to last dimension. Outputs: Tensor, has the same type and shape as input `assist`. Examples: >>> x = Tensor(np.array([1, -1]), mstype.float32) >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) >>> matrix_diag = P.MatrixDiag() >>> result = matrix_diag(x, assist) [[[-12. 11.] [-10. 9.]] [[ -8. 7.] [ -6. 5.]] [[ -4. 3.] [ -2. 1.]]] """ @prim_attr_register def __init__(self): """init MatrixDiag""" def infer_dtype(self, x_dtype, assist_dtype): valid_type = [mstype.float16, mstype.float32, mstype.int32, mstype.int8, mstype.uint8] args = {"x": x_dtype, "assist": assist_dtype} validator.check_tensor_type_same(args, valid_type, self.name) return x_dtype def infer_shape(self, x_shape, assist_shape): validator.check_integer("assist rank", len(assist_shape), 2, Rel.GE, self.name) validator.check('rank of x', len(x_shape)+1, 'rank of assist', len(assist_shape), Rel.LE, self.name) validator.check('assist\'s penultimate dimension', assist_shape[-2], 'assist\'s last dimension', assist_shape[-1], Rel.EQ, self.name) r_end_dim = -len(x_shape) r_idx = -1 while r_idx >= r_end_dim: if x_shape[r_idx] != 1: validator.check("reverse x dim %d" % r_idx, x_shape[r_idx], "reverse assist dim %d" % assist_shape[r_idx-1], assist_shape[r_idx-1], Rel.EQ, self.name) r_idx = r_idx - 1 return assist_shape class MatrixDiagPart(PrimitiveWithInfer): r""" Returns the batched diagonal part of a batched tensor. Inputs: - **x** (Tensor) - The batched tensor. It can be of the following data types: float32, float16, int32, int8, uint8. - **assist** (Tensor) - A eye tensor of the same type as `x`. With shape same as `x`. Outputs: Tensor, data type same as input `x`. The shape should be x.shape[:-2] + [min(x.shape[-2:])]. Examples: >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> assist = Tensor(np.arange(-12, 0).reshape(3, 2, 2), mindspore.float32) >>> matrix_diag_part = P.MatrixDiagPart() >>> result = matrix_diag_part(x, assist) [[12., -9.], [8., -5.], [4., -1.]] """ @prim_attr_register def __init__(self): """init MatrixDiagPart""" def infer_dtype(self, x_dtype, assist_dtype): valid_type = [mstype.float16, mstype.float32, mstype.int32, mstype.int8, mstype.uint8] args = {"x": x_dtype, "assist": assist_dtype} validator.check_tensor_type_same(args, valid_type, self.name) return x_dtype def infer_shape(self, x_shape, assist_shape): validator.check_integer("x rank", len(x_shape), 2, Rel.GE, self.name) validator.check("x shape", x_shape, "assist shape", assist_shape, Rel.EQ, self.name) if assist_shape[-2] < assist_shape[-1]: out_shape = assist_shape[:-1] else: out_shape = assist_shape[:-2] + assist_shape[-1:] return out_shape class MatrixSetDiag(PrimitiveWithInfer): r""" Modify the batched diagonal part of a batched tensor. Inputs: - **x** (Tensor) - The batched tensor. It can be of the following data types: float32, float16, int32, int8, uint8. - **assist** (Tensor) - A eye tensor of the same type as `x`. With shape same as `x`. - **diagonal** (Tensor) - The diagonal values. Outputs: Tensor, data type same as input `x`. The shape same as `x`. Examples: >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32) >>> matrix_set_diag = P.MatrixSetDiag() >>> result = matrix_set_diag(x, diagonal) [[[-1, 0], [0, 2]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]] """ @prim_attr_register def __init__(self): """init MatrixSetDiag""" def infer_dtype(self, x_dtype, diagonal_dtype, assist_dtype): valid_type = [mstype.float16, mstype.float32, mstype.int32, mstype.int8, mstype.uint8] args = {"x": x_dtype, "diagonal": diagonal_dtype, "assist": assist_dtype} validator.check_tensor_type_same(args, valid_type, self.name) return x_dtype def infer_shape(self, x_shape, diagonal_shape, assist_shape): validator.check_integer("x rank", len(x_shape), 2, Rel.GE, self.name) validator.check("x shape", x_shape, "assist shape", assist_shape, Rel.EQ, self.name) if x_shape[-2] < x_shape[-1]: validator.check("diagnoal shape", diagonal_shape, "x shape excluding the last dimension", x_shape[:-1], Rel.EQ, self.name) else: validator.check("diagonal shape", diagonal_shape, "x shape excluding the second last dimension", x_shape[:-2] + x_shape[-1:], Rel.EQ, self.name) return assist_shape