# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class SubNet(nn.Cell): def __init__(self): super(SubNet, self).__init__() self.sub = P.Sub() def construct(self, x, y): return self.sub(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_sub(): x = np.ones([2, 3, 4, 4]).astype(np.int32) y = 1 net = SubNet() output = net(Tensor(x), Tensor(y, mindspore.int32)) expect_output = np.zeros([2, 3, 4, 4]).astype(np.int) print(output) assert np.all(output.asnumpy() == expect_output)