# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train""" import argparse import numpy as np from src.mdnn import Mdnn from mindspore import nn, Model, context from mindspore import dataset as ds from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.callback import Callback import mindspore.common.initializer as weight_init parser = argparse.ArgumentParser(description='Mdnn Controller') parser.add_argument('--i', type=str, default=None, help='Input radial and angular dat file') parser.add_argument('--charge', type=str, default=None, help='Input charge dat file') parser.add_argument('--device_id', type=int, default=0, help='GPU device id') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="GPU", device_id=args_opt.device_id, save_graphs=False) class StepLossAccInfo(Callback): """custom callback function""" def __init__(self, models, eval_dataset, steploss): """init model""" self.model = models self.eval_dataset = eval_dataset self.steps_loss = steploss def step_end(self, run_context): """step end""" cb_params = run_context.original_args() cur_epoch = cb_params.cur_epoch_num cur_step = (cur_epoch - 1) * 1875 + cb_params.cur_step_num self.steps_loss["loss_value"].append(str(cb_params.net_outputs)) self.steps_loss["step"].append(str(cur_step)) def get_data(inputdata, outputdata): """get data function""" for _, data in enumerate(zip(inputdata, outputdata)): yield data def create_dataset(inputdata, outputdata, batchsize=32, repeat_size=1): """create dataset function""" input_data = ds.GeneratorDataset(list(get_data(inputdata, outputdata)), column_names=['data', 'label']) input_data = input_data.batch(batchsize) input_data = input_data.repeat(repeat_size) return input_data def init_weight(nnet): for _, cell in nnet.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(), cell.weight.shape, cell.weight.dtype)) if isinstance(cell, nn.Dense): cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(), cell.weight.shape, cell.weight.dtype)) if __name__ == '__main__': # read input files inputs = args_opt.i outputs = args_opt.charge radial_angular = np.fromfile(inputs, dtype=np.float32) radial_angular = radial_angular.reshape((-1, 258)).astype(np.float32) charge = np.fromfile(outputs, dtype=np.float32) charge = charge.reshape((-1, 129)).astype(np.float32) # define the model net = Mdnn() lr = 0.0001 decay_rate = 0.8 epoch_size = 1000 batch_size = 500 total_step = epoch_size * batch_size step_per_epoch = 100 decay_epoch = epoch_size lr_rate = nn.exponential_decay_lr(lr, decay_rate, total_step, step_per_epoch, decay_epoch) net_loss = nn.loss.MSELoss(reduction='mean') net_opt = nn.Adam(net.trainable_params(), learning_rate=lr_rate) model = Model(net, net_loss, net_opt) ds_train = create_dataset(radial_angular, charge, batchsize=batch_size) model_params = net.trainable_params() net.set_train() init_weight(net) # config files path = './params/' config_ck = CheckpointConfig(save_checkpoint_steps=100, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="mdnn_best", directory=path, config=config_ck) steps_loss = {"step": [], "loss_value": []} step_loss_acc_info = StepLossAccInfo(model, ds_train, steps_loss) # train the model model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(100)])