# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Inference Interface""" import sys import argparse import logging from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy from mindspore import context from src.dataset import create_dataset_cifar10 from src.loss import LabelSmoothingCrossEntropy from src.nasnet import nasbenchnet from easydict import EasyDict as edict root = logging.getLogger() root.setLevel(logging.DEBUG) parser = argparse.ArgumentParser(description='Evaluation') parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/', metavar='DIR', help='path to dataset') parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL', help='Name of model to train (default: "hournas_f_c10")') parser.add_argument('--num-classes', type=int, default=10, metavar='N', help='number of label classes (default: 10)') parser.add_argument('--smoothing', type=float, default=0.1, help='label smoothing (default: 0.1)') parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('-j', '--workers', type=int, default=4, metavar='N', help='how many training processes to use (default: 4)') parser.add_argument('--ckpt', type=str, default='./nasmodel.ckpt', help='model checkpoint to load') parser.add_argument('--GPU', action='store_true', default=False, help='Use GPU for training (default: False)') parser.add_argument('--dataset_sink', action='store_true', default=False, help='Data sink (default: False)') parser.add_argument('--device_id', type=int, default=0, help='Device ID (default: 0)') parser.add_argument('--image-size', type=int, default=32, metavar='N', help='input image size (default: 32)') def main(): """Main entrance for training""" args = parser.parse_args() print(sys.argv) #context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.PYNATIVE_MODE) if args.GPU: context.set_context(device_target='GPU', device_id=args.device_id) # parse model argument assert args.model.startswith( "hournas"), "Only Tinynet models are supported." net = nasbenchnet() cfg = edict({ 'image_height': args.image_size, 'image_width': args.image_size, }) cfg.batch_size = args.batch_size val_data_url = args.data_path val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg) loss = LabelSmoothingCrossEntropy(smooth_factor=args.smoothing, num_classes=args.num_classes) loss.add_flags_recursive(fp32=True, fp16=False) eval_metrics = {'Validation-Loss': Loss(), 'Top1-Acc': Top1CategoricalAccuracy(), 'Top5-Acc': Top5CategoricalAccuracy()} ckpt = load_checkpoint(args.ckpt) load_param_into_net(net, ckpt) net.set_train(False) model = Model(net, loss, metrics=eval_metrics) metrics = model.eval(val_dataset, dataset_sink_mode=False) print(metrics) if __name__ == '__main__': main()