# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for DQN""" import argparse import gym from mindspore import context from mindspore.common import set_seed from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import config_dqn as cfg from src.agent import Agent parser = argparse.ArgumentParser(description='MindSpore dqn Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--ckpt_path', type=str, default=None, help='if is test, must provide\ path where the trained ckpt file') args = parser.parse_args() set_seed(1) if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) env = gym.make('CartPole-v1') cfg.state_space_dim = env.observation_space.shape[0] cfg.action_space_dim = env.action_space.n agent = Agent(**cfg) # load checkpoint if args.ckpt_path: param_dict = load_checkpoint(args.ckpt_path) not_load_param = load_param_into_net(agent.policy_net, param_dict) if not_load_param: raise ValueError("Load param into net fail!") score = 0 agent.load_dict() for episode in range(50): s0 = env.reset() total_reward = 1 while True: a0 = agent.eval_act(s0) s1, r1, done, _ = env.step(a0) if done: r1 = -1 if done: break total_reward += r1 s0 = s1 score += total_reward print("episode", episode, "total_reward", total_reward) print("mean_reward", score/50)