# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Training entry file""" import os from absl import logging from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore import context, Model from mindspore.context import ParallelMode from mindspore.communication.management import init from mindspore.common import set_seed from src.dataset import create_dataset from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap from utils.moxing_adapter import moxing_wrapper from utils.config import config from utils.device_adapter import get_device_id, get_device_num, get_rank_id, get_job_id set_seed(1) logging.set_verbosity(logging.INFO) def modelarts_pre_process(): config.checkpoint_path = os.path.join(config.output_path, str(get_rank_id()), config.checkpoint_path) @moxing_wrapper(pre_process=modelarts_pre_process) def run_train(): """train entry method""" print(config) print("device id: ", get_device_id()) print("device num: ", get_device_num()) print("rank id: ", get_rank_id()) print("job id: ", get_job_id()) context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) config.is_distributed = bool(get_device_num() > 1) if config.is_distributed: config.group_size = get_device_num() context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=config.group_size, parallel_mode=ParallelMode.DATA_PARALLEL, parameter_broadcast=True, gradients_mean=True) if config.device_target == "Ascend": context.set_context(device_id=get_device_id()) init() elif config.device_target == "GPU": init() else: context.set_context(device_id=get_device_id()) layers = config.layers num_factors = config.num_factors epochs = config.train_epochs ds_train, num_train_users, num_train_items = create_dataset(test_train=True, data_dir=config.data_path, dataset=config.dataset, train_epochs=1, batch_size=config.batch_size, num_neg=config.num_neg) print("ds_train.size: {}".format(ds_train.get_dataset_size())) ncf_net = NCFModel(num_users=num_train_users, num_items=num_train_items, num_factors=num_factors, model_layers=layers, mf_regularization=0, mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], mf_dim=16) loss_net = NetWithLossClass(ncf_net) train_net = TrainStepWrap(loss_net, ds_train.get_dataset_size() * (epochs + 1)) train_net.set_train() model = Model(train_net) callback = LossMonitor(per_print_times=ds_train.get_dataset_size()) ckpt_config = CheckpointConfig(save_checkpoint_steps=(4970845+config.batch_size-1)//(config.batch_size), keep_checkpoint_max=100) ckpoint_cb = ModelCheckpoint(prefix='NCF', directory=config.checkpoint_path, config=ckpt_config) model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), callback, ckpoint_cb], dataset_sink_mode=True) print("="*100 + "Training Finish!" + "="*100) if __name__ == '__main__': run_train()