# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Using for eval the model checkpoint""" import os from absl import logging from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore import context, Model import src.constants as rconst from src.dataset import create_dataset from src.metrics import NCFMetric from src.ncf import NCFModel, NetWithLossClass, TrainStepWrap, PredictWithSigmoid from utils.config import config from utils.moxing_adapter import moxing_wrapper from utils.device_adapter import get_device_id logging.set_verbosity(logging.INFO) @moxing_wrapper() def run_eval(): """eval method""" if not os.path.exists(config.output_path): os.makedirs(config.output_path) context.set_context(mode=context.GRAPH_MODE, device_target="Davinci", save_graphs=False, device_id=get_device_id()) layers = config.layers num_factors = config.num_factors topk = rconst.TOP_K num_eval_neg = rconst.NUM_EVAL_NEGATIVES ds_eval, num_eval_users, num_eval_items = create_dataset(test_train=False, data_dir=config.data_path, dataset=config.dataset, train_epochs=0, eval_batch_size=config.eval_batch_size) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) ncf_net = NCFModel(num_users=num_eval_users, num_items=num_eval_items, num_factors=num_factors, model_layers=layers, mf_regularization=0, mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], mf_dim=16) param_dict = load_checkpoint(config.checkpoint_file_path) load_param_into_net(ncf_net, param_dict) loss_net = NetWithLossClass(ncf_net) train_net = TrainStepWrap(loss_net) eval_net = PredictWithSigmoid(ncf_net, topk, num_eval_neg) ncf_metric = NCFMetric() model = Model(train_net, eval_network=eval_net, metrics={"ncf": ncf_metric}) ncf_metric.clear() out = model.eval(ds_eval) eval_file_path = os.path.join(config.output_path, config.eval_file_name) eval_file = open(eval_file_path, "a+") eval_file.write("EvalCallBack: HR = {}, NDCG = {}\n".format(out['ncf'][0], out['ncf'][1])) eval_file.close() print("EvalCallBack: HR = {}, NDCG = {}".format(out['ncf'][0], out['ncf'][1])) print("=" * 100 + "Eval Finish!" + "=" * 100) if __name__ == '__main__': run_eval()