# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air, onnx, mindir models################# python export.py """ import argparse import numpy as np import mindspore as ms from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export from src.simclr_model import SimCLR from src.resnet import resnet50 as resnet parser = argparse.ArgumentParser(description='SimCLR') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=128, help="batch size") parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['cifar10'], help='Dataset, Currently only cifar10 is supported.') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend'], help='Device target, Currently only Ascend is supported.') parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="simclr", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) if args_opt.device_target == "Ascend": context.set_context(device_id=args_opt.device_id) if __name__ == '__main__': if args_opt.dataset_name == 'cifar10': width_multiplier = 1 cifar_stem = True projection_dimension = 128 image_height = 32 image_width = 32 else: raise ValueError("dataset is not support.") base_net = resnet(1, width_multiplier=width_multiplier, cifar_stem=cifar_stem) net = SimCLR(base_net, projection_dimension, base_net.end_point.in_channels) param_dict = load_checkpoint(args_opt.ckpt_file) load_param_into_net(net, param_dict) input_arr = Tensor(np.zeros([args_opt.batch_size, 3, image_height, image_width]), ms.float32) export(net, input_arr, file_name=args_opt.file_name, file_format=args_opt.file_format)