# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export for retinanet""" import argparse import numpy as np import mindspore.common.dtype as mstype from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.retinanet import retinanet50, resnet50, retinanetInferWithDecoder from src.config import config from src.box_utils import default_boxes if __name__ == '__main__': parser = argparse.ArgumentParser(description='retinanet evaluation') parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"), help="run platform, only support Ascend.") parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--file_name", type=str, default="retinanet", help="output file name.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id) backbone = resnet50(config.num_classes) net = retinanet50(backbone, config) net = retinanetInferWithDecoder(net, Tensor(default_boxes), config) param_dict = load_checkpoint(config.checkpoint_path) net.init_parameters_data() load_param_into_net(net, param_dict) net.set_train(False) shape = [args_opt.batch_size, 3] + config.img_shape input_data = Tensor(np.zeros(shape), mstype.float32) export(net, input_data, file_name=args_opt.file_name, file_format=args_opt.file_format)